Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

Докажите, что геометрическая прогрессия {an} = bx0n удовлетворяет соотношению (11.2 ) тогда и только тогда, когда x0 -- корень характеристического уравнения (11.3 ) последовательности {an}.

Вниз   Решение


На сторонах BC и CD квадрата ABCD взяты точки M и K соответственно, причем $ \angle$BAM = $ \angle$MAK. Докажите, что BM + KD = AK.

ВверхВниз   Решение


Ось симметрии многоугольника пересекает его стороны в точках A и B. Докажите, что точка A является либо вершиной многоугольника, либо серединой стороны, перпендикулярной оси симметрии.

ВверхВниз   Решение


Четырехугольник имеет ось симметрии. Докажите, что этот четырехугольник либо является равнобедренной трапецией, либо симметричен относительно диагонали.

ВверхВниз   Решение


Пусть  x = ab + bc + ca, x1 = mamb + mbmc + mcma. Докажите, что  9/20 < x1/x < 5/4.

ВверхВниз   Решение


Две высоты треугольника больше 1. Докажите, что его площадь больше 1/2.

ВверхВниз   Решение


Два квадрата BCDA и BKMN имеют общую вершину B. Докажите, что медиана BE треугольника ABK и высота BF треугольника CBN лежат на одной прямой. (Вершины обоих квадратов перечислены по часовой стрелке.)

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 58]      



Задача 105096

Темы:   [ Таблицы и турниры (прочее) ]
[ Процессы и операции ]
Сложность: 3
Классы: 6,7,8

На клетчатой бумаге нарисован прямоугольник шириной 200 и высотой 100 клеток. Его закрашивают по клеткам, начав с левой верхней и идя по спирали (дойдя до края или уже закрашенной части, поворачивают направо, см. рис.). Какая клетка будет закрашена последней? (Укажите номер её строки и столбца. Например, нижняя правая клетка стоит в 100-й строке и 200-м столбце.)

Прислать комментарий     Решение

Задача 30756

Темы:   [ Таблицы и турниры (прочее) ]
[ Инварианты ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 7,8

В таблице 3×3 одна из угловых клеток закрашена чёрным цветом, все остальные – белым. Докажите, что с помощью перекрашивания строк и столбцов нельзя добиться того, чтобы все клетки стали белыми. Под перекрашиванием строки или столбца понимается изменение цвета всех клеток в строке или столбце.

Прислать комментарий     Решение

Задача 64542

Темы:   [ Таблицы и турниры (прочее) ]
[ Комбинаторика (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+

В квадратной таблице размером 100×100 некоторые клетки закрашены. Каждая закрашенная клетка является единственной закрашенной клеткой либо в своем столбце, либо в своей строке. Какое наибольшее количество клеток может быть закрашено?

Прислать комментарий     Решение

Задача 65104

Темы:   [ Таблицы и турниры (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 5,6,7

Обезьяна становится счастливой, когда съедает три разных фрукта. Какое наибольшее количество обезьян можно осчастливить, имея 20 груш, 30 бананов, 40 персиков и 50 мандаринов?

Прислать комментарий     Решение

Задача 67042

Тема:   [ Таблицы и турниры (прочее) ]
Сложность: 3+
Классы: 8,9

В турнире участвовали 20 шахматистов. Каждый играл с каждым один раз белыми и один раз чёрными. Обязательно ли найдутся такие два шахматиста, что один из них выиграл не меньше партий белыми и не меньше партий чёрными, чем другой?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 58]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .