ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 50]
Разложите многочлен a³ + b³ + c³ – 3abc на три линейных множителя.
Докажите, что если x1, x2, x3 – корни уравнения x³ + px + q = 0, то
На доске написано уравнение x³ + *x² + *x + * = 0. Петя и Вася по очереди заменяют звёздочки на рациональные числа: вначале Петя заменяет любую из звёздочек, потом Вася – любую из двух оставшихся, а затем Петя – оставшуюся звёздочку. Верно ли, что при любых действиях Васи Петя сможет получить уравнение, у которого разность каких-то двух корней равна 2014?
Найдите все значения параметра a, при которых корни x1, x2, x3 многочлена x3 – 6x2 + ax + a удовлетворяют
равенству
Постройте многочлен, корни которого равны квадратам корней многочлена x3 + x2 – 2x – 1.
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 50] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|