|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Дан неравнобедренный треугольник ABC. Точка O – центр его описанной окружности, а точка K – центр описанной окружности ω треугольника BCO. Высота треугольника ABC, проведенная из точки A, пересекает окружность ω в точке P. Прямая PK пересекает описанную окружность треугольника ABC в точках E и F. Докажите, что один из отрезков EP и FP равен отрезку PA. Через точку O пересечения медиан треугольника ABC проведена прямая, пересекающая его стороны в точках M и N. Докажите, что NO |
Страница: 1 2 3 4 5 >> [Всего задач: 21]
Вычислите функции gk,l(x) при 0 ≤ k + l ≤ 4 и покажите, что все они являются многочленами.
Докажите следующие свойства функций gk,l(x)
(определения функций gk,l(x)
смотри здесь):
Проверьте, что многочлены Чебышёва Tn(x) и Un(x) (см. задачу
61099)
удовлетворяют начальным условиям
Докажите, что у многочлена 2Tn(x/2) старший коэффициент равен единице, а все остальные коэффициенты – целые числа.
а) Определение (смотри в справочнике)
функций gk,l(x) не позволяет вычислять их значения при x = 1. Но, поскольку функции gk,l(x) являются многочленами, они определены и при x = 1. Докажите равенство б) Какие свойства биномиальных коэффициентов получаются, если в свойства б) – г) из задачи 61522 подставить значение x = 1?
Страница: 1 2 3 4 5 >> [Всего задач: 21] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|