ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Пароход шёл от Нижнего Новгорода до Астрахани 5 суток, а обратно – 7 суток. Сколько дней плывут плоты от Нижнего Новгорода до Астрахани?

Вниз   Решение


Автор: Шноль Д.Э.

В парке росли липы и клены. Кленов среди них было 60%. Весной в парке посадили липы, после чего кленов стало 20%. А осенью посадили клены, и кленов стало снова 60%. Во сколько раз увеличилось количество деревьев в парке за год?

ВверхВниз   Решение


Дан трехгранный угол с вершиной O. Можно ли найти такое плоское сечение ABC, чтобы углы OAB, OBA, OBC, OCB, OAC, OCA были острыми?

ВверхВниз   Решение


Конструктор состоит из набора прямоугольных параллелепипедов. Все их можно поместить в одну коробку, также имеющую форму прямоугольного параллелепипеда. В бракованном наборе одно из измерений каждого параллелепипеда оказалось меньше стандартного. Всегда ли у коробки, в которую укладывается набор, тоже можно уменьшить одно из измерений (параллелепипеды укладываются в коробку так, что их рёбра параллельны рёбрам коробки)?

ВверхВниз   Решение


Медианы AA' и BB' треугольника ABC пересекаются в точке M , причем AMB=120o . Докажите, что углы AB'M и BA'M не могут быть оба острыми или оба тупыми.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 10]      



Задача 61100

Темы:   [ Многочлены Чебышева ]
[ Тригонометрия (прочее) ]
[ Рекуррентные соотношения (прочее) ]
Сложность: 3
Классы: 9,10,11

Проверьте, что многочлены Чебышёва Tn(x) и Un(x) (см. задачу 61099) удовлетворяют начальным условиям
T0(x) = 1,   T1(x) = x;   U0(x) = 1,   U1(x) = 2x,   и рекуррентным формулам   Tn+1(x) = 2xTn(x) – Tn–1(x),   Un+1(x) = 2xUn(x) – Un–1(x).

Прислать комментарий     Решение

Задача 61101

Темы:   [ Многочлены Чебышева ]
[ Рекуррентные соотношения (прочее) ]
Сложность: 3+
Классы: 9,10,11

Докажите, что у многочлена 2Tn(x/2) старший коэффициент равен единице, а все остальные коэффициенты – целые числа.
Здесь Tn – многочлен Чебышёва, смотри задачу 61099.

Прислать комментарий     Решение

Задача 61106

Темы:   [ Многочлены Чебышева ]
[ Рекуррентные соотношения (прочее) ]
[ Уравнения высших степеней (прочее) ]
[ Тригонометрические уравнения ]
Сложность: 4
Классы: 9,10,11

Последовательность многочленов  P0(x) = 1,  P1(x) = xP2(x) = x² – 1, ...  задается условием  Pn+1(x) = xPn(x) – Pn–1(x).
Докажите, что уравнение  P100(x) = 0  имеет 100 различных действительных корней на отрезке  [–2, 2].  Что это за корни?

Прислать комментарий     Решение

Задача 107816

Темы:   [ Многочлены Чебышева ]
[ Целочисленные и целозначные многочлены ]
[ Тождественные преобразования ]
Сложность: 4
Классы: 9,10,11

Найдите какой-нибудь многочлен с целыми коэффициентами, корнем которого является число   + .

Прислать комментарий     Решение

Задача 61109

Темы:   [ Тригонометрия (прочее) ]
[ Многочлены Чебышева ]
Сложность: 3+
Классы: 10,11

При подстановке в многочлены Чебышёва (см. задачу 61099) числа  x = cos α  получаются значения

 

Что будет, если в многочлены Чебышёва подставить число  x = sin α?

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 10]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .