|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Для каких n выполняются неравенства: а) n! > 2n; б) 2n > n². Сторона основания ABC правильной треугольной пирамиды ABCD равна 6, двугранный угол между боковыми гранями равен arccos 7/32. Точки A1 и B1 – середины рёбер AD и BD соответственно, BC1 – высота в треугольнике DBC. Найдите: |
Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 424]
Известно, что при любом целом K ≠ 27 число a – K³ делится на 27 – K. Найти a.
Известно, что при любом целом K ≠ 27 число a – K1964 делится без остатка на 27 – K. Найти a.
Доказать, что существует бесконечно много таких пар (a, b) натуральных чисел, что a² + 1 делится на b, а b² + 1 делится на a.
По кругу записаны семь натуральных чисел. Известно, что в каждой паре соседних чисел одно делится на другое.
Докажите, что если в числе 12008 между нулями вставить любое количество троек, то получится число, делящееся на 19.
Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 424] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|