ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 367]      



Задача 109185

Темы:   [ Арифметика остатков (прочее) ]
[ Десятичная система счисления ]
[ Деление с остатком ]
Сложность: 3-
Классы: 7,8,9

Доказать, что сумма цифр квадрата любого числа не может быть равна 1967.

Прислать комментарий     Решение

Задача 116411

Темы:   [ Арифметика остатков (прочее) ]
[ Арифметика. Устный счет и т.п. ]
Сложность: 3-
Классы: 9,10,11

Из Южной Америки в Россию 2010 кораблей везут бананы, лимоны и ананасы. Число бананов на каждом корабле равно числу лимонов на остальных кораблях вместе взятых, а число лимонов на каждом корабле равно числу ананасов на остальных кораблях вместе взятых. Докажите, что общее число фруктов делится на 31.

Прислать комментарий     Решение

Задача 116484

Темы:   [ Арифметика остатков (прочее) ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 3-
Классы: 7,8,9

Незнайка утверждает, что существует восемь таких последовательных натуральных чисел, что в разложение их на простые множители каждый множитель входит в нечётной степени (например, два таких последовательных числа:  23 = 231  и  24 = 2³·31).  Прав ли он?

Прислать комментарий     Решение

Задача 116536

Темы:   [ Арифметика остатков (прочее) ]
[ Разложение на множители ]
[ Периодичность и непериодичность ]
[ Перебор случаев ]
Сложность: 3-
Классы: 8,9,10

Автор: Фольклор

Сколько существует таких натуральных n, не превосходящих 2012, что сумма  1n + 2n + 3n + 4n  оканчивается на 0?

Прислать комментарий     Решение

Задача 116894

Тема:   [ Арифметика остатков (прочее) ]
Сложность: 3-
Классы: 10,11

Автор: Фольклор

Существуют ли четыре последовательных натуральных числа, каждое из которых можно представить в виде суммы квадратов двух натуральных чисел?

Прислать комментарий     Решение

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 367]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .