Страница:
<< 7 8 9 10
11 12 13 >> [Всего задач: 84]
|
|
|
Сложность: 5 Классы: 10,11
|
Назовём тройку чисел
триплетом, если одно из них равно среднему арифметическому двух других. Дана бесконечная последовательность $(a_n)$, состоящая из натуральных чисел. Известно, что $a_1=a_2=1$ и при $n > 2$ число $a_n$ — минимальное натуральное число такое, что среди чисел $a_1,a_2,\ldots,a_n$ нет трёх, образующих триплет. Докажите, что $a_n\leqslant \frac{n^2+7}{8}$ для любого $n$.
|
|
|
Сложность: 5 Классы: 8,9,10,11
|
Кощей придумал для Ивана-дурака испытание. Он дал Ивану волшебную дудочку, на которой можно играть только две ноты – до и си. Для прохождения испытания Ивану нужно сыграть какую-нибудь мелодию из 300 нот на свой выбор. Но до того, как он начнёт играть, Кощей выбирает и объявляет запретными одну мелодию из пяти нот, одну – из шести нот, ..., одну – из 30 нот. Если в какой-то момент
последние сыгранные ноты образуют одну из запретных мелодий, дудочка
перестаёт звучать. Сможет ли Иван пройти испытание, какие бы мелодии
Кощей ни объявил запретными?
Дана последовательность целых чисел, построенная следующим образом:
a1 — произвольное трёхзначное число,
a2 — сумма квадратов его цифр,
a3 — сумма квадратов цифр числа
a2 и т.д. Докажите, что в
последовательности
a1,
a2,
a3, ...обязательно встретится либо 1,
либо 4.
|
|
|
Сложность: 5 Классы: 10,11
|
Даны 2
n конечных последовательностей из нулей и единиц, причём ни одна из
них не является началом никакой другой. Доказать, что сумма длин этих
последовательностей не меньше
n . 2
n.
|
|
|
Сложность: 5 Классы: 8,9,10
|
Можно ли выбрать некоторые натуральные числа так, чтобы при любом натуральном
значении
n хотя бы одно из чисел
n,
n + 50 было выбрано и хотя бы одно из
чисел
n,
n + 1987 не было выбрано?
Страница:
<< 7 8 9 10
11 12 13 >> [Всего задач: 84]