ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Докажите, что если у тетраэдра равны два противоположных ребра, а суммы плоских углов при двух вершинах равны по 180o , то все грани тетраэдра – равные треугольники.

Вниз   Решение


В правильной треугольной пирамиде SABC ( S – вершина, SA = 2 ) точка D – середина ребра SB . Расстояние от точки C до прямой AD равно . Найдите объём пирамиды. Дана сфера радиуса с центром в точке C . Рассматриваются всевозможные правильные тетраэдры MNPQ такие, что точки P и Q лежат на прямой AD , а прямая MN касается сферы в одной из точек отрезка MN . Найдите наименьшее значение длины ребра рассматриваемых тетраэдров.

ВверхВниз   Решение


В правильной пирамиде SMNPQ ( S – вершина) точки H и F – середины рёбер MN и NP соответственно, точка E лежит на отрезке SH , причём SH = 3 , SE = . Расстояние от точки S до прямой EF равно . Найдите объём пирамиды. Дана сфера радиуса 1 с центром в точке S . Рассматриваются всевозможные правильные тетраэдры ABCD такие, что точки C и D лежат на прямой EF , а прямая AB касается сферы в одной из точек отрезка AB . Найдите наименьшее значение длины ребра рассматриваемых тетраэдров.

ВверхВниз   Решение


Боковые рёбра треугольной пирамиды попарно перпендикулярны, а площади боковых граней равны S , P и Q . Найдите радиус вписанного шара. Найдите также радиус шара, касающегося основания и продолжений боковых граней пирамиды.

ВверхВниз   Решение


В правильной пирамиде SMNPQ ( S – вершина) точки K и F – середины рёбер PQ и QM соответственно, точка E лежит на отрезке SK , причём SK = 4 , SE = . Расстояние от точки S до прямой EF равно . Найдите объём пирамиды. Дана сфера радиуса 1 с центром в точке S . Рассматриваются всевозможные правильные тетраэдры ABCD такие, что точки A и B лежат на прямой EF , а прямая CD касается сферы в одной из точек отрезка CD . Найдите наименьшее значение длины ребра рассматриваемых тетраэдров.

Вверх   Решение

Задачи

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 592]      



Задача 30852

Тема:   [ Числовые неравенства. Сравнения чисел. ]
Сложность: 3
Классы: 8

Что больше:  1234567/7654321  или  1234568/7654322?
Прислать комментарий     Решение


Задача 30857

Темы:   [ Числовые неравенства. Сравнения чисел. ]
[ Показательные функции и логарифмы (прочее) ]
Сложность: 3
Классы: 6,7

Сколько цифр у числа 21000?

Прислать комментарий     Решение

Задача 30867

Тема:   [ Неравенство Коши ]
Сложность: 3
Классы: 9

a, b, c ≥ 0.  Докажите, что   .

Прислать комментарий     Решение

Задача 30868

Тема:   [ Неравенство Коши ]
Сложность: 3
Классы: 8,9

Докажите, что  x² + y² + 1 ≥ xy + x + y  при любых x и y.

Прислать комментарий     Решение

Задача 30874

Тема:   [ Неравенство Коши ]
Сложность: 3
Классы: 6,7

Докажите, что при a, b, c > 0 имеет место неравенство  

Прислать комментарий     Решение

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 592]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .