ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

После того, как Наташа съела половину персиков из банки, уровень компота понизился на одну треть.
На какую часть (от полученного уровня) понизится уровень компота, если съесть половину оставшихся персиков?

   Решение

Задачи

Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 258]      



Задача 55231

Темы:   [ Неравенства с высотами ]
[ Неравенство Коши ]
Сложность: 4-
Классы: 8,9

Пусть h1, h2, h3 – высоты треугольника, r – радиус вписанной окружности. Докажите, что  h1 + h2 + h3 ≥ 9r.

Прислать комментарий     Решение

Задача 61367

Темы:   [ Алгебраические неравенства (прочее) ]
[ Неравенство Коши ]
Сложность: 4-
Классы: 9,10,11

Докажите неравенство  xαyβ ≤ αx + βy  для положительных значений переменных при условии, что  α + β = 1  (α, β > 0).

Прислать комментарий     Решение

Задача 61377

Темы:   [ Алгебраические неравенства (прочее) ]
[ Классические неравенства ]
[ Тождественные преобразования ]
Сложность: 4-
Классы: 8,9,10,11

Докажите неравенство для положительных значений переменных:   a³b + b³c + c³aabc(a + b + c).

Прислать комментарий     Решение

Задача 61389

Темы:   [ Алгебраические неравенства (прочее) ]
[ Неравенство Коши ]
Сложность: 4-
Классы: 9,10,11

Докажите неравенство  (1 + x1)...(1 + xn) ≥ 2n,  где x1...xn = 1.
Значения переменных считаются положительными.

Прислать комментарий     Решение

Задача 61404

Темы:   [ Алгебраические неравенства (прочее) ]
[ Неравенство Коши ]
[ Индукция (прочее) ]
Сложность: 4-
Классы: 10,11

Используя результат задачи 61403, докажите неравенства:
  а)     неравенство Коши);
  б)  

  в)     где  b1 + ... + bn = 1.
  Значения переменных считаются положительными.

Прислать комментарий     Решение

Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 258]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .