|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи В левый нижний угол шахматной доски 8×8 поставлено в форме квадрата 3×3 девять фишек. Фишка может прыгать на свободное поле через рядом стоящую фишку, то есть симметрично отражаться относительно её центра (прыгать можно по вертикали, горизонтали и диагонали). Можно ли за некоторое количество таких ходов поставить все фишки вновь в форме квадрата 3×3, но в другом углу:
|
Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 258]
Показать, что если a > b > 0, то разность между средним
арифметическим и средним геометрическим этих чисел находится между
Внутри стороны BC правильного треугольника ABC взята точка D. Прямая, проходящая через точку C и параллельная AD, пересекает прямую AB в точке E. Докажите, что
В классе 30 учеников. Докажите, что вероятность того, что у каких-нибудь двух учеников совпадают дни рождения, составляет больше 50%.
Докажите, что если α < β, то Sα(x) ≤ Sβ(x), причём равенство возможно только когда x1 = x2 = ... = xn.
Выведите из неравенства Мюрхеда (задача 61424) неравенство между средним арифметическим и средним геометрическим.
Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 258] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|