Страница:
<< 1 2 3
4 5 6 7 >> [Всего задач: 264]
|
|
Сложность: 3- Классы: 8,9,10,11
|
В последовательности действительных чисел $a_1$, $a_2$, $\dots$ каждое число, начиная с третьего, равно полусумме двух предыдущих. Докажите, что все параболы вида $y=x^2+a_nx+a_{n+1}$ (где $n=1$, $2$, $3$, $\dots$) имеют общую точку.
|
|
Сложность: 3- Классы: 8,9,10,11
|
Квадратный трехчлен y = ax² + bx + c не имеет корней и а + b + c > 0. Найдите знак коэффициента с.
|
|
Сложность: 3- Классы: 7,8,9,10
|
Существуют ли такие три квадратных трёхчлена, что каждый из них имеет корень, а сумма любых двух из них корней не имеет?
|
|
Сложность: 3- Классы: 8,9,10
|
Существуют ли такие три квадратных трёхчлена, что каждый из них имеет два различных действительных корня, а сумма любых двух из них действительных корней не имеет?
Может ли вершина параболы у = 4х² – 4(а + 1)х + а лежать во второй координатной четверти при каком-нибудь значении а?
Страница:
<< 1 2 3
4 5 6 7 >> [Всего задач: 264]