Страница:
<< 10 11 12 13 14 15 16 [Всего задач: 80]
В углы B и C треугольника ABC вписаны две окружности
радиусов 2 и 3, касающиеся биссектрисы угла A треугольника.
Найдите эту биссектрису, если расстояние между точками, в которых окружности касаются BC, равно 7.
а) В треугольниках
ABC и
A'B'C' равны стороны
AC и
A'C', углы при вершинах
B и
B' и биссектрисы углов
B и
B'.
Докажите, что эти треугольники равны (точнее говоря, треугольник
ABC равен треугольнику
A'B'C' или треугольнику
C'B'A').
б) Через точку
D биссектрисы
BB1 угла
ABC проведены прямые
AA1 и
CC1 (точки
A1 и
C1 лежат на сторонах треугольника).
Докажите, что если
AA1 =
CC1, то
AB = BC.
|
|
Сложность: 4 Классы: 8,9,10,11
|
Собралось n человек. Некоторые из них знакомы между собой, причём каждые два незнакомых имеют ровно двух общих знакомых, а каждые два знакомых не имеют общих знакомых. Доказать, что каждый из присутствующих знаком с одинаковым числом человек.
|
|
Сложность: 5- Классы: 8,9,10
|
Известно, что f(x), g(x) и h(x) – квадратные трёхчлены. Может ли уравнение f(g(h(x))) = 0 иметь корни 1, 2, 3, 4, 5, 6, 7 и 8?
Четырёхугольник KLMN вписан в окружность. Точка P лежит на его
стороне KL, причём PM || KN и PN || LM.
Найдите длины отрезков KP и LP, если MN = 6 и KL = 13.
Страница:
<< 10 11 12 13 14 15 16 [Всего задач: 80]