ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 210]      



Задача 116883

Темы:   [ Числовые неравенства. Сравнения чисел. ]
[ Тригонометрический круг ]
Сложность: 3
Классы: 10,11

Автор: Фольклор

Сравните: sin 3 и sin 3°.

Прислать комментарий     Решение

Задача 116997

Темы:   [ Числовые неравенства. Сравнения чисел. ]
[ Тригонометрические уравнения ]
Сложность: 3
Классы: 9,10,11

Автор: Фольклор

Найдите наибольшее значение выражения  х + у,  если     x ∈ [0, /2],   y ∈ [π, 2π].

Прислать комментарий     Решение

Задача 60865

Темы:   [ Рациональные и иррациональные числа ]
[ Тождественные преобразования (тригонометрия) ]
Сложность: 3
Классы: 9,10

Докажите, что при x≠πn (n– целое) sin x и cos x рациональны тогда и только тогда, когда число tg $ {\dfrac{x}{2}}$ рационально.

Прислать комментарий     Решение

Задача 61168

Темы:   [ Геометрические интерпретации в алгебре ]
[ Тождественные преобразования (тригонометрия) ]
[ Тангенсы и котангенсы углов треугольника ]
Сложность: 3+
Классы: 9,10,11

Докажите равенство:

arctg 1 + arctg $\displaystyle {\textstyle\dfrac{1}{2}}$ + arctg $\displaystyle {\textstyle\dfrac{1}{3}}$ = $\displaystyle {\dfrac{\pi}{2}}$.


Прислать комментарий     Решение

Задача 61232

Темы:   [ Тождественные преобразования (тригонометрия) ]
[ Обратные тригонометрические функции ]
Сложность: 3+
Классы: 9,10

Докажите равенство:

arctg $\displaystyle {\textstyle\frac{1}{3}}$ + arctg $\displaystyle {\textstyle\frac{1}{5}}$ + arctg $\displaystyle {\textstyle\frac{1}{7}}$ + arctg $\displaystyle {\textstyle\frac{1}{8}}$ = $\displaystyle {\frac{\pi}{4}}$.


Прислать комментарий     Решение

Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 210]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .