ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 29 30 31 32 33 34 35 >> [Всего задач: 1006]      



Задача 30789

Тема:   [ Деревья ]
Сложность: 3+
Классы: 7,8

В стране Древляндия 101 город, и некоторые из них соединены дорогами. При этом каждые два города соединяет ровно один путь.
Сколько в этой стране дорог?

Прислать комментарий     Решение

Задача 30795

Тема:   [ Планарные графы. Формула Эйлера ]
Сложность: 3+
Классы: 7,8,9

В стране Озёрная семь озер, соединённых между собой десятью непересекающимися каналами, причём от каждого озера можно доплыть до любого другого. Сколько в этой стране островов?

Прислать комментарий     Решение

Задача 30797

Темы:   [ Планарные графы. Формула Эйлера ]
[ Подсчет двумя способами ]
Сложность: 3+
Классы: 8,9

Докажите, что для плоского графа справедливо неравенство  2E ≥ 3F.

Прислать комментарий     Решение

Задача 30810

Темы:   [ Степень вершины ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 7,8

На конференции присутствуют 50 учёных, каждый из которых знаком по крайней мере с 25 участниками конференции.
Докажите, что найдутся четверо из них, которых можно усадить за круглый стол так, чтобы каждый сидел рядом со знакомыми ему людьми.

Прислать комментарий     Решение

Задача 30813

Тема:   [ Деревья ]
Сложность: 3+
Классы: 7,8

Дима нарисовал на доске семь графов, каждый из которых является деревом с шестью вершинами. Докажите, что среди них есть два изоморфных.

Прислать комментарий     Решение

Страница: << 29 30 31 32 33 34 35 >> [Всего задач: 1006]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .