ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На плоскости дан многоугольник A1A2...An и точка O внутри его. Докажите, что равенства
необходимы и достаточны для того, чтобы существовало аффинное преобразование, переводящее данный многоугольник в правильный, а точку O — в его центр. Докажите, что треугольник ABC остроугольный тогда и
только тогда, когда длины его проекций на три различных направления
равны.
Докажите, что из шести ребер тетраэдра можно сложить два треугольника. а) Дан кусок проволоки длиной 120 см. Можно ли, не ломая проволоки, изготовить каркас куба с ребром 10 см? |
Страница: << 101 102 103 104 105 106 107 >> [Всего задач: 1010]
Каких чисел больше среди натуральных чисел от 1 до 1000000 включительно: представимых в виде суммы точного квадрата и точного куба или не представимых в таком виде?
Даны пятьдесят различных натуральных чисел, двадцать пять из которых не превосходят 50, а остальные больше 50, но не превосходят 100. При этом никакие два из них не отличаются ровно на 50. Найдите сумму этих чисел.
Из ряда натуральных чисел вычеркнули все числа, которые являются квадратами или кубами целых чисел.
В круговом шахматном турнире участвует 9 мальчиков и 3 девочки (каждый играет с каждым один раз, победа – 1 очко; ничья – 0,5; поражение – 0). Может ли в итоге оказаться, что сумма очков, набранных всеми мальчиками, будет равна сумме очков, набранных всеми девочками?
Дан правильный девятиугольник.
Страница: << 101 102 103 104 105 106 107 >> [Всего задач: 1010]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке