ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 59 60 61 62 63 64 65 >> [Всего задач: 9702]      



Задача 35437

Темы:   [ Равные треугольники. Признаки равенства (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 8,9

Верно ли, что два треугольника ABC и A'B'C' равны, если  AB =A'B',  BC = B'C', и  ∠A = ∠A'?

Прислать комментарий     Решение

Задача 35482

Темы:   [ Алгебраические задачи на неравенство треугольника ]
[ Геометрическая прогрессия ]
Сложность: 3
Классы: 8,9,10

Докажите, что в любом многоугольнике найдутся две стороны, отношение которых заключено между числами 1/2 и 2.
Прислать комментарий     Решение


Задача 35507

Темы:   [ Неравенство треугольника (прочее) ]
[ Системы точек ]
[ Длины и периметры (геометрические неравенства) ]
Сложность: 3
Классы: 8,9

На окружности радиуса 1 отмечено 100 точек.
Докажите, что на окружности найдётся точка, сумма расстояний от которой до всех отмеченных точек будет не меньше 100.

Прислать комментарий     Решение

Задача 35527

Тема:   [ Площадь четырехугольника ]
Сложность: 3
Классы: 9,10

Известно, что середины сторон двух выпуклых четырехугольников совпадают. Докажите, что их площади равны.
Прислать комментарий     Решение


Задача 35540

Тема:   [ Против большей стороны лежит больший угол ]
Сложность: 3
Классы: 8,9

Докажете, что в звезде, изображенной на картинке, не могут быть выполнены одновременно неравенства BC > AB, DE > CD, FG > EF, HK > GH, LA > KL.

Прислать комментарий     Решение

Страница: << 59 60 61 62 63 64 65 >> [Всего задач: 9702]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .