Страница:
<< 83 84 85 86
87 88 89 >> [Всего задач: 737]
|
|
Сложность: 4 Классы: 7,8,9
|
На доске написано число 0. Два игрока по очереди приписывают справа к выражению на доске:
первый – знак + или
- , второй – одно из натуральных чисел от 1 до 1993. Игроки делают
по 1993 хода, причем второй записывает каждое из чисел от 1 до 1993 ровно по одному разу. В конце
игры второй игрок получает выигрыш, равный модулю алгебраической суммы, написанной на доске. Какой
наибольший выигрыш он может себе гарантировать?
|
|
Сложность: 4 Классы: 8,9,10
|
На столе лежат две кучки монет. Известно, что суммарный вес монет из первой кучки равен суммарному весу монет из второй кучки, а для каждого натурального числа k, не превосходящего числа монет как в первой, так и во второй кучке, суммарный вес k самых тяжелых монет из первой кучки не больше суммарного веса k самых тяжелых монет из второй кучки. Докажите, что если заменить каждую монету, вес которой не меньше x, на монету веса
x (в обеих кучках), то первая кучка монет окажется не легче второй,
каково бы ни было положительное число x.
|
|
Сложность: 4 Классы: 7,8,9,10
|
На столе стоят три пустых банки из-под меда. Винни-Пух, Кролик и
Пятачок по очереди кладут по одному ореху в одну из банок. Их порядковые
номера до начала игры определяются жребием. При этом
Винни может добавлять орех только в первую или вторую банку, Кролик –
только во вторую или третью, а Пятачок – в первую или третью.
Тот, после
чьего хода в какой-нибудь банке оказалось ровно 1999 орехов,
проигрывает.
Докажите, что Винни-Пух и Пятачок могут, договорившись, играть
так, чтобы Кролик проиграл.
|
|
Сложность: 4 Классы: 8,9,10
|
Имеются пять внешне одинаковых гирь с попарно различными массами. Разрешается выбрать любые три из них A, B и C и спросить, верно ли,
что
m(A) < m(B) < m(C) (через m(x) обозначена масса гири x). При этом даётся ответ "Да" или "Нет". Можно ли за девять вопросов гарантированно узнать, в каком порядке идут веса гирь?
|
|
Сложность: 4 Классы: 7,8,9
|
В одном из узлов шестиугольника со стороной
n , разбитого на правильные
треугольники
(см. рис.) , стоит фишка. Двое играющих по очереди
передвигают ее в один из соседних узлов, причем запрещается ходить в узел,
в котором фишка уже побывала. Проигрывает тот, кто не может сделать хода.
Кто выигрывает при правильной игре?
Страница:
<< 83 84 85 86
87 88 89 >> [Всего задач: 737]