ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 591]      



Задача 116536

Темы:   [ Арифметика остатков (прочее) ]
[ Разложение на множители ]
[ Периодичность и непериодичность ]
[ Перебор случаев ]
Сложность: 3-
Классы: 8,9,10

Автор: Фольклор

Сколько существует таких натуральных n, не превосходящих 2012, что сумма  1n + 2n + 3n + 4n  оканчивается на 0?

Прислать комментарий     Решение

Задача 116894

Тема:   [ Арифметика остатков (прочее) ]
Сложность: 3-
Классы: 10,11

Автор: Фольклор

Существуют ли четыре последовательных натуральных числа, каждое из которых можно представить в виде суммы квадратов двух натуральных чисел?

Прислать комментарий     Решение

Задача 116999

Тема:   [ Арифметика остатков (прочее) ]
Сложность: 3-
Классы: 9,10,11

Автор: Фольклор

Известно, что  b = 20132013 + 2.  Будут ли числа  b³ + 1  и  b² + 2  взаимно простыми?

Прислать комментарий     Решение

Задача 30383

Тема:   [ Арифметика остатков (прочее) ]
Сложность: 3
Классы: 7,8,9

Докажите, что сумма квадратов трёх натуральных чисел, уменьшенная на 7, не делится на 8.

Прислать комментарий     Решение

Задача 30407

Темы:   [ Деление с остатком ]
[ НОД и НОК. Взаимная простота ]
Сложность: 3
Классы: 7,8,9

Найдите наименьшее число, дающее следующие остатки: 1 – при делении на 2, 2 – при делении на 3, 3 – при делении на 4, 4 – при делении на 5, 5 – при делении на 6.

Прислать комментарий     Решение

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 591]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .