ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 47 48 49 50 51 52 53 >> [Всего задач: 368]      



Задача 64559

Темы:   [ Простые числа и их свойства ]
[ Уравнения в целых числах ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 7,8,9

Может ли разность квадратов двух простых чисел быть квадратом натурального числа?

Прислать комментарий     Решение

Задача 65443

Темы:   [ Десятичная система счисления ]
[ Уравнения в целых числах ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 3
Классы: 6,7,8

Юра записал четырёхзначное число. Лёня прибавил к первой цифре этого числа 1, ко второй 2, к третьей 3 и к четвёртой 4, а потом перемножил полученные суммы. У Лёни получилось 234. Какое число могло быть записано Юрой?

Прислать комментарий     Решение

Задача 65899

Темы:   [ Десятичная система счисления ]
[ Уравнения в целых числах ]
[ НОД и НОК. Взаимная простота ]
Сложность: 3
Классы: 7,8

Последняя цифра в записи натурального числа в 2016 раз меньше самого числа. Найдите все такие числа.

Прислать комментарий     Решение

Задача 65997

Темы:   [ Тригонометрические неравенства ]
[ Уравнения в целых числах ]
Сложность: 3
Классы: 10,11

Решите в целых числах неравенство:  x² < 3 – 2cos πx.

Прислать комментарий     Решение

Задача 66077

Темы:   [ Десятичная система счисления ]
[ Уравнения в целых числах ]
Сложность: 3
Классы: 7,8,9

Найдите наибольшее натуральное число, все цифры в десятичной записи которого различны и которое уменьшается в 5 раз, если зачеркнуть первую цифру.

Прислать комментарий     Решение

Страница: << 47 48 49 50 51 52 53 >> [Всего задач: 368]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .