ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Существуют ли три взаимно простых в совокупности натуральных числа, квадрат каждого из которых делится на сумму двух оставшихся?

   Решение

Задачи

Страница: << 48 49 50 51 52 53 54 >> [Всего задач: 368]      



Задача 76470

Темы:   [ Десятичная система счисления ]
[ Уравнения в целых числах ]
Сложность: 3
Классы: 8,9

Найти четырёхзначное число, являющееся точным квадратом и такое, что две первые цифры одинаковы между собой и две последние также.

Прислать комментарий     Решение

Задача 77998

Темы:   [ Признаки делимости на 2 и 4 ]
[ Уравнения в целых числах ]
Сложность: 3
Классы: 8,9

Существуют ли целые числа m и n, удовлетворяющие уравнению  m² + 1954 = n²?

Прислать комментарий     Решение

Задача 78507

Темы:   [ Принцип крайнего (прочее) ]
[ Уравнения в целых числах ]
[ Доказательство от противного ]
Сложность: 3
Классы: 10,11

Доказать, что не существует попарно различных натуральных чисел x, y, z, t, для которых было бы справедливо соотношение  xx + yy = zz + tt.

Прислать комментарий     Решение

Задача 86505

Темы:   [ Квадратные корни (прочее) ]
[ Уравнения в целых числах ]
[ Рациональные и иррациональные числа ]
Сложность: 3
Классы: 8,9

Найдите все значения а, для которых выражения   а +   и   1/а   принимают целые значения.

Прислать комментарий     Решение

Задача 97788

Темы:   [ Произведения и факториалы ]
[ Уравнения в целых числах ]
Сложность: 3
Классы: 8,9

Автор: Фольклор

Доказать, что уравнение  mn! = k!  имеет бесконечно много таких решений, что m, n и k – натуральные числа, большие единицы.

Прислать комментарий     Решение

Страница: << 48 49 50 51 52 53 54 >> [Всего задач: 368]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .