Страница:
<< 8 9 10 11
12 13 14 >> [Всего задач: 67]
|
|
Сложность: 4+ Классы: 9,10,11
|
а) Электрическая схема имеет вид решётки 3×3: всего в схеме 16 узлов (вершины квадратиков решётки), которые соединены проводами (стороны квадратиков решётки). Возможно, часть проводов перегорела. За одно измерение можно выбрать любую пару узлов схемы и проверить, проходит ли между ними ток (то есть, проверить, существует ли цепочка неперегоревших проводов, соединяющая эти узлы). В действительности схема такова, что ток проходит от любого узла к любому. За какое наименьшее число измерений всегда можно в этом удостовериться?
б) Тот же вопрос для решётки 7×7 (всего 64 узла).
|
|
Сложность: 5- Классы: 9,10,11
|
В некотором государстве было 2004 города, соединённых дорогами так, что из каждого города можно было добраться до любого другого. Известно, что при запрещённом проезде по любой из дорог по-прежнему из каждого города можно
было добраться до любого другого. Министр транспорта и министр внутренних
дел по очереди вводят на дорогах, пока есть возможность, одностороннее
движение (на одной дороге за ход), причём министр, после хода которого из
какого-либо города стало невозможно добраться до какого-либо другого,
немедленно уходит в отставку. Первым ходит министр транспорта.
Может ли кто-либо из министров добиться отставки другого независимо от его игры?
|
|
Сложность: 5 Классы: 8,9,10
|
Гидры состоят из голов и шей (каждая шея соединяет ровно две головы). Одним ударом меча можно снести все шеи, выходящие из какой-то головы A гидры.
Но при этом из головы A мгновенно вырастает по одной шее во все головы,
с которыми A не была соединена. Геракл побеждает гидру, если ему удастся разрубить её на две несвязанные шеями части. Найдите наименьшее N, при котором Геракл сможет победить любую стошеюю гидру, нанеся не более чем N ударов.
|
|
Сложность: 3 Классы: 8,9,10
|
Двадцать городов соединены 172 авиалиниями.
Доказать, что, используя эти авиалинии, можно из любого города перелететь в любой другой (быть может, делая пересадки).
|
|
Сложность: 3+ Классы: 7,8,9
|
Каждый из 450 депутатов парламента дал пощёчину ровно одному своему коллеге.
Докажите, что можно избрать парламентскую комиссию из 150 человек, среди
членов которой никто никого не бил.
Страница:
<< 8 9 10 11
12 13 14 >> [Всего задач: 67]