ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 67]      



Задача 97890

Темы:   [ Комбинаторная геометрия (прочее) ]
[ Векторы помогают решить задачу ]
[ Связность и разложение на связные компоненты ]
Сложность: 5
Классы: 10,11

а) Точка O лежит внутри выпуклого n-угольника A1A2A3...An. Рассматриваются углы AiOAj при всевозможных парах  (i, j)  (i, j – различные натуральные числа от 1 до n). Докажите, что среди этих углов найдётся по крайней мере  n – 1  не острых (прямых, тупых или развёрнутых) углов.

б) То же для выпуклого многогранника, имеющего n вершин.

Прислать комментарий     Решение

Задача 109740

Темы:   [ Деревья ]
[ Наименьшее или наибольшее расстояние (длина) ]
[ Связность и разложение на связные компоненты ]
Сложность: 5
Классы: 9,10,11

В стране несколько городов, некоторые пары городов соединены дорогами, причём между каждыми двумя городами существует единственный несамопересекающийся путь по дорогам. Известно, что в стране ровно 100 городов, из которых выходит по одной дороге. Докажите, что можно построить 50 новых дорог так, что после этого даже при закрытии любой дороги можно будет из каждого города попасть в любой другой.

Прислать комментарий     Решение

Задача 64656

Темы:   [ Наглядная геометрия в пространстве ]
[ Комбинаторная геометрия (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
[ Связность и разложение на связные компоненты ]
[ Проектирование помогает решить задачу ]
Сложность: 4-
Классы: 8,9

Автор: Марачёв А.

Из кубиков 1×1×1 склеен куб 3×3×3. Какое наибольшее количество кубиков можно из него выкинуть, чтобы осталась фигура с такими двумя свойствами:
  - со стороны каждой грани исходного куба фигура выглядит как квадрат 3×3 (глядя перпендикулярно этой грани, мы не увидим просвета – видны 9 кубиков фигуры);
  - переходя в фигуре от кубика к кубику через их общую грань, можно от каждого кубика добраться до любого другого?

Прислать комментарий     Решение

Задача 65816

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Примеры и контрпримеры. Конструкции ]
[ Теория алгоритмов (прочее) ]
[ Связность и разложение на связные компоненты ]
[ Оценка + пример ]
Сложность: 4-
Классы: 7,8,9

Шахматная фигура может сдвигаться на 8 или 9 клеток по горизонтали или вертикали. Запрещается ходить на одну и ту же клетку дважды.
Какое наибольшее количество клеток может обойти эта фигура на доске 15×15? (Начать обход разрешается с любой клетки.)

Прислать комментарий     Решение

Задача 108403

Темы:   [ Ориентированные графы ]
[ Деревья ]
[ Раскраски ]
[ Связность и разложение на связные компоненты ]
[ Степень вершины ]
Сложность: 4-
Классы: 7,8,9

Выбежав после уроков на двор, каждый школьник кинул снежком ровно в одного другого школьника.
Докажите, что всех учащихся можно разбить на три команды так, что члены одной команды друг в друга снежками не кидали.

Прислать комментарий     Решение

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 67]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .