Страница:
<< 8 9 10 11 12 13
14 >> [Всего задач: 67]
|
|
Сложность: 5 Классы: 10,11
|
а) Точка O лежит внутри выпуклого n-угольника
A1A2A3...An. Рассматриваются углы AiOAj при всевозможных парах (i, j) (i, j – различные натуральные числа от 1 до n). Докажите, что среди этих углов найдётся по крайней мере n – 1 не острых (прямых, тупых или развёрнутых) углов.
б) То же для выпуклого многогранника, имеющего n вершин.
|
|
Сложность: 5 Классы: 9,10,11
|
В стране несколько городов, некоторые пары городов соединены дорогами, причём
между каждыми двумя городами существует единственный несамопересекающийся путь
по дорогам. Известно, что в стране ровно 100 городов, из которых выходит
по одной дороге. Докажите, что можно построить 50 новых дорог так, что после этого даже при закрытии любой дороги можно будет из каждого города попасть в любой другой.
Из кубиков 1×1×1 склеен куб 3×3×3. Какое наибольшее количество кубиков можно из него выкинуть, чтобы осталась фигура с такими двумя свойствами:
- со стороны каждой грани исходного куба фигура выглядит как квадрат 3×3 (глядя перпендикулярно этой грани, мы не увидим просвета – видны 9 кубиков фигуры);
- переходя в фигуре от кубика к кубику через их общую грань, можно от каждого кубика добраться до любого другого?
|
|
Сложность: 4- Классы: 7,8,9
|
Шахматная фигура может сдвигаться на 8 или 9 клеток по горизонтали или вертикали. Запрещается ходить на одну и ту же клетку дважды.
Какое наибольшее количество клеток может обойти эта фигура на доске 15×15? (Начать обход разрешается с любой клетки.)
|
|
Сложность: 4- Классы: 7,8,9
|
Выбежав после уроков на двор, каждый школьник кинул снежком ровно в одного другого школьника.
Докажите, что всех учащихся можно разбить на три команды так, что члены одной команды друг в друга снежками не кидали.
Страница:
<< 8 9 10 11 12 13
14 >> [Всего задач: 67]