|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Незнайка не знает о существовании операций умножения и возведения в степень. Однако он хорошо освоил сложение, вычитание, деление и извлечение квадратного корня, а также умеет пользоваться скобками. Упражняясь, Незнайка выбрал три числа 20, 2 и 2 и составил выражение $\sqrt{(2+20):2}$. А может ли он, используя точно те же три числа 20, 2 и 2, составить выражение, значение которого больше 30? Укажите какое-нибудь решение ребуса: 2014 + ГОД = СОЧИ. |
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 48]
Пусть для простого числа p > 2 и целого a, не кратного p, выполнено сравнение x² ≡ a (mod p). Докажите, что a(p–1)/2 ≡ 1 (mod p).
Даны натуральные числа x и y из отрезка [2, 100]. Докажите, что при некотором натуральном n число x2n + y2n – составное.
а) Пусть p – простое число, отличное от 3. Докажите, что число 1...1 (p единиц) не делится на p. б) Пусть p > 5 – простое число. Докажите, что число 1...1 (p – 1 единица) делится на p.
Найти все такие натуральные числа p, что p и p6 + 6 – простые.
Целые числа a, b и c таковы, что a³ + b³ + c³ делится на 7. Докажите, что abc делится на 7.
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 48] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|