|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Ученик не заметил знака умножения между двумя семизначными числами и написал одно четырнадцатизначное число, которое оказалось в три раза больше их произведения. Найдите эти числа. Доказать, что квадрат натурального числа не может оканчиваться на две нечётные цифры. У ведущего есть колода из 52 карт. Зрители хотят узнать, в каком порядке лежат карты (при этом не уточняя сверху вниз или снизу вверх). Разрешается задавать ведущему вопросы вида "Сколько карт лежит между такой-то и такой-то картами?". Один из зрителей подсмотрел, в каком порядке лежат карты. Какое наименьшее число вопросов он должен задать, чтобы остальные зрители по ответам на эти вопросы могли узнать порядок карт в колоде? |
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 80]
Любознательный турист хочет прогуляться по улицам Старого города от вокзала (точка A на плане) до своего отеля (точка B). Турист хочет, чтобы его маршрут был как можно длиннее, но дважды оказываться на одном и том же перекрестке ему неинтересно, и он так не делает. Нарисуйте на плане самый длинный возможный маршрут и докажите, что более длинного нет.
Можно ли n раз рассадить 2n + 1 человек за круглым столом, чтобы никакие двое не сидели рядом более одного раза, если
Можно ли четыре раза рассадить девять человек за круглым столом так, чтобы никакие двое не сидели рядом более одного раза?
Можно ли n раз рассадить 2n + 1 человека за круглым столом так, чтобы никакие двое не сидели рядом более одного раза, если а) n = 5; б) n = 10?
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 80] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|