ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 73 74 75 76 77 78 79 >> [Всего задач: 488]      



Задача 115888

Темы:   [ Выпуклые многоугольники ]
[ Системы точек и отрезков. Примеры и контрпримеры ]
[ Принцип крайнего (прочее) ]
Сложность: 4-
Классы: 8,9,10,11

На плоскости задано n точек, являющихся вершинами выпуклого n-угольника,  n > 3.  Известно, что существует ровно k равносторонних треугольников со стороной 1, вершины которых – заданные точки.
  а) Докажите, что  k < 2n/3.
  б) Приведите пример конфигурации, для которой  k > 0,666n.

Прислать комментарий     Решение

Задача 116725

Темы:   [ Системы точек и отрезков (прочее) ]
[ Сумма длин диагоналей четырехугольника ]
[ Наименьшее или наибольшее расстояние (длина) ]
[ Доказательство от противного ]
Сложность: 4-
Классы: 10,11

Внутри круга отмечены 100 точек, никакие три из которых не лежат на одной прямой.
Докажите, что их можно разбить на пары и провести прямую через каждую пару так, чтобы все точки пересечения прямых были в круге.

Прислать комментарий     Решение

Задача 31091

Темы:   [ Степень вершины ]
[ Обход графов ]
[ Принцип крайнего (прочее) ]
[ Доказательство от противного ]
Сложность: 4
Классы: 6,7,8

В графе 20 вершин, степень каждой не меньше 10. Доказать, что в нём есть гамильтонов путь.

Прислать комментарий     Решение

Задача 31104

Темы:   [ Теория графов (прочее) ]
[ Степень вершины ]
[ Принцип крайнего (прочее) ]
[ Неравенство Коши ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4
Классы: 6,7,8

а) Какое наибольшее число рёбер может быть в 30-вершинном графе, в котором нет треугольников?
б) Какое наибольшее число рёбер может быть в 30-вершинном графе, в котором нет полного подграфа из четырёх вершин?

Прислать комментарий     Решение

Задача 34879

Темы:   [ Диаметр, хорды и секущие ]
[ Наименьшее или наибольшее расстояние (длина) ]
[ Принцип крайнего ]
Сложность: 4
Классы: 8,9,10

В круге провели несколько (конечное число) различных хорд так, что каждая из них проходит через середину какой-либо другой из проведённых хорд. Докажите, что все эти хорды являются диаметрами круга.
Прислать комментарий     Решение


Страница: << 73 74 75 76 77 78 79 >> [Всего задач: 488]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .