Страница:
<< 75 76 77 78
79 80 81 >> [Всего задач: 488]
|
|
Сложность: 4 Классы: 8,9,10
|
Вдоль коридора положено несколько кусков ковровой дорожки. Куски покрывают весь
коридор из конца в конец без пропусков и даже налегают друг на друга, так что
над некоторыми местами пола они лежат в несколько слоев. Доказать, что можно
убрать несколько кусков, возможно, достав их из-под других и оставив остальные
в точности на тех же местах, где они лежали прежде, так что коридор по-прежнему
будет полностью покрыт, и общая длина оставленных кусков будет меньше удвоенной
длины коридора.
В клетках таблицы размером 10×20 расставлено 200 различных чисел. В
каждой строчке отмечены три наибольших числа красным цветом, а в каждом столбце
отмечены три наибольших числа синим цветом. Доказать, что не менее девяти чисел
отмечены в таблице как красным, так и синим цветом.
Дано 8 действительных чисел: a, b, c, d, e, f, g, h. Доказать,
что хотя бы одно из шести чисел ac + bd, ae + bf, ag + bh, ce + df, cg + dh, eg + fh неотрицательно.
|
|
Сложность: 4 Классы: 9,10,11
|
Докажите, что в выпуклый центрально-симметричный многоугольник можно
поместить ромб вдвое меньшей площади.
|
|
Сложность: 4 Классы: 8,9,10
|
В Швамбрании N городов, каждые два соединены дорогой. При этом дороги
сходятся лишь в городах (нет перекрёстков, одна дорога поднята эстакадой над
другой). Злой волшебник устанавливает на всех дорогах одностороннее движение
таким образом, что если из города можно выехать, то в него нельзя вернуться.
Доказать, что
а) волшебник может это сделать;
б) найдётся город, из которого можно добраться до всех, и
найдётся город, из которого нельзя выехать;
в) существует единственный путь, обходящий все города;
г) волшебник может осуществить своё намерение N! способами.
Страница:
<< 75 76 77 78
79 80 81 >> [Всего задач: 488]