Страница:
<< 80 81 82 83
84 85 86 >> [Всего задач: 488]
|
|
Сложность: 4+ Классы: 9,10,11
|
Докажите, что если
++=++=
=
++
для некоторых
a ,
b ,
c ,
x ,
y ,
z , то
x=y=z или
a=b=c .
|
|
Сложность: 5- Классы: 9,10,11
|
Выпуклый многоугольник
M переходит в себя при повороте
на угол
90
o . Докажите, что найдутся два круга с отношением радиусов,
равным
, один из которых содержит
M , а другой содержится
в
M .
|
|
Сложность: 5- Классы: 9,10
|
Докажите, что для треугольника со сторонами
a ,
b ,
c
и площадью
S выполнено неравенство
a2+b2+c2- (|a-b|+|b-c|+|c-a|)2 4 S.
Отрезок длиной 1 покрыт несколькими лежащими на нем отрезками.
Докажите, что среди них можно выбрать несколько попарно
непересекающихся отрезков, сумма длин которых не меньше 0,5.
|
|
Сложность: 5- Классы: 9,10,11
|
Имеются 13 гирь. Известно, что любые 12 из них можно так разложить на две чашки весов, по шесть на каждую, что наступит равновесие.
Докажите, что все гири имеют одну и ту же массу, если известно, что:
а) масса каждой гири равна целому числу граммов;
б) масса каждой гири равна рациональному числу граммов;
в) масса каждой гири может быть равна любому действительному (неотрицательному) числу.
Страница:
<< 80 81 82 83
84 85 86 >> [Всего задач: 488]