ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 74 75 76 77 78 79 80 >> [Всего задач: 416]      



Задача 105088

Темы:   [ Суммы числовых последовательностей и ряды разностей ]
[ Итерации ]
[ Целочисленные и целозначные многочлены ]
[ Рациональные и иррациональные числа ]
[ Последовательности (прочее) ]
[ Процессы и операции ]
Сложность: 5-
Классы: 9,10,11

Из имеющихся последовательностей {bn} и {cn} (возможно, {bn} совпадает с {cn})  разрешается получать последовательности  {bn + cn},
{bn – cn},  {bncn}  и  {bn/cn}  (если все члены последовательности {cn} отличны от 0). Кроме того, из любой имеющейся последовательности можно получить новую, вычеркнув несколько начальных членов. Сначала есть только последовательность {an}. Можно ли получить из неё описанными выше операциями последовательность {n}, то есть 1, 2, 3, 4, ..., если
  а)  an = n²;

  б)  

  в)  

Прислать комментарий     Решение

Задача 60875

Темы:   [ Рекуррентные соотношения (прочее) ]
[ Двоичная система счисления ]
[ Индукция (прочее) ]
[ Целая и дробная части. Принцип Архимеда ]
Сложность: 5
Классы: 10,11

Определим последовательности чисел (xn) и (dn) условиями  x1 = 1,  xn+1 = [  ],  dn = x2n+1 – 2x2n–1  (n ≥ 1).
Докажите, что число в двоичной системе счисления представляется в виде  (d1,d2d3...)2.

Прислать комментарий     Решение

Задача 67262

Темы:   [ Арифметическая прогрессия ]
[ Индукция (прочее) ]
[ Предел последовательности, сходимость ]
[ Ограниченность, монотонность ]
Сложность: 5
Классы: 9,10,11

Бесконечные возрастающие арифметические прогрессии $a_{1}, a_{2}, a_{3}, \ldots$ и $b_{1}, b_{2}, b_{3}, \ldots$ состоят из положительных чисел. Известно, что отношение $\frac{a_{k}}{b_{k}}$ целое при любом $k$. Верно ли, что это отношение не зависит от $k$?
Прислать комментарий     Решение


Задача 109602

Темы:   [ Тригонометрические уравнения ]
[ Тригонометрические неравенства ]
[ Монотонность и ограниченность ]
[ Монотонность, ограниченность ]
Сложность: 5
Классы: 9,10,11

Решите уравнение cos(cos(cos(cos x)))= sin(sin(sin(sin x))) .
Прислать комментарий     Решение


Задача 64745

Темы:   [ Четырехугольники (прочее) ]
[ Кривые второго порядка ]
[ Проективные преобразования плоскости ]
[ Монотонность, ограниченность ]
Сложность: 5+
Классы: 10,11

Автор: Нилов Ф.

Проекции двух точек на стороны четырёхугольника лежат на двух различных концентрических окружностях (проекции каждой точки образуют вписанный четырёхугольник, а радиусы соответствующих окружностей различны). Докажите, что четырёхугольник – параллелограмм.

Прислать комментарий     Решение

Страница: << 74 75 76 77 78 79 80 >> [Всего задач: 416]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .