Страница:
<< 77 78 79 80
81 82 83 >> [Всего задач: 416]
|
|
Сложность: 4 Классы: 9,10,11
|
Пусть a – положительный корень уравнения x2017 – x – 1 = 0, а b – положительный корень уравнения y4034 – y = 3a.
а) Сравните a и b.
б) Найдите десятый знак после запятой числа |a – b|.
|
|
Сложность: 4 Классы: 9,10,11
|
Последовательность натуральных чисел an строится следующим образом: a0 – некоторое натуральное число; an+1 = ⅕ an, если an делится на 5;
an+1 = [ an], если an не делится на 5. Докажите, что начиная с некоторого члена последовательность an возрастает.
|
|
Сложность: 5- Классы: 8,9,10
|
Положительные числа х1, ..., хk удовлетворяют неравенствам
а) Докажите, что k > 50.
б) Построить пример таких чисел для какого-нибудь k.
в) Найти минимальное k, для которого пример возможен.
|
|
Сложность: 5- Классы: 9,10,11
|
На плоскости отмечены две точки на расстоянии 1. Разрешается, измерив циркулем расстояние между двумя отмеченными точками, провести окружность с центром в любой отмеченной точке с измеренным радиусом. Линейкой разрешается провести прямую через любые две отмеченные точки. При этом отмечаются новые точки – точки пересечения построенных линий. Пусть Ц(n) – наименьшее число линий, проведение которых одним циркулем позволяет получить две отмеченные точки на расстоянии n (n – натуральное). ЛЦ(n) – то же, но циркулем и линейкой. Докажите, что последовательность неограничена.
|
|
Сложность: 5- Классы: 9,10,11
|
На плоскости отмечено несколько точек. Для любых трех из
них существует декартова система координат (т.е. перпендикулярные оси и
общий масштаб), в которой эти точки имеют целые координаты. Докажите, что
существует декартова система координат, в которой все отмеченные точки имеют
целые координаты.
Страница:
<< 77 78 79 80
81 82 83 >> [Всего задач: 416]