Страница:
<< 54 55 56 57
58 59 60 >> [Всего задач: 829]
|
|
Сложность: 3 Классы: 8,9,10
|
В прямоугольном треугольнике ABC с прямым углом C угол A равен 30°, точка I – центр вписанной окружности ABC, D – точка пересечения отрезка BI с этой окружностью. Докажите, что отрезки AI и CD перпендикулярны.
На сторонах AB и BC параллелограмма ABCD расположены точки N и M соответственно, причём AN : NB = 3 : 2, BM : MC = 2 : 5. Прямые AM и DN пересекаются в точке O. Найдите отношения OM : OA и ON : OD.
В треугольнике ABC точка M – середина стороны AC,
точка P лежит на стороне BC. Отрезок AP пересекает BM в точке O. Оказалось, что BO = BP.
Найдите отношение OM : PC.
|
|
Сложность: 3 Классы: 7,8,9
|
В остроугольном треугольнике ABC на сторонах AC и AB отметили точки K и L соответственно, причём прямая KL параллельна BC и KL = KC. На стороне BC выбрана точка M так, что ∠KMB = ∠BAC. Докажите, что KM = AL.
|
|
Сложность: 3 Классы: 8,9,10
|
Рассматриваются все треугольники АВС, у которых положение вершин В и С зафиксировано, а вершина А перемещается в плоскости треугольника так, что медиана СМ имеет одну и ту же длину. По какой траектории движется точка А?
Страница:
<< 54 55 56 57
58 59 60 >> [Всего задач: 829]