Страница:
<< 101 102 103 104
105 106 107 >> [Всего задач: 829]
Можно ли разрезать треугольник на три выпуклых многоугольника с попарно различным количеством сторон?
|
|
Сложность: 3 Классы: 8,9,10,11
|
Дан выпуклый пятиугольник $ABCDE$, в котором AE || CD и $AB = BC$. Биссектрисы его углов $A$ и $C$ пересекаются в точке $K$. Докажите, что BK || AE.
В описанном пятиугольнике ABCDE диагонали AD и CE пересекаются в центре O вписанной окружности.
Докажите, что отрезок BO и сторона DE перпендикулярны.
На стороне AC треугольника ABC выбрана точка D, причём DC = 2AD, O – центр вписанной окружности
треугольника DBC, E – точка касания этой окружности с прямой BD. Оказалось, что BD = BC. Докажите, что AE || DO.
В трапеции ABCD с основаниями AD и BC угол при вершине A – прямой, E – точка пересечения диагоналей, F – проекция точки E на сторону AB .
Докажите, что углы DFE и CFE равны.
Страница:
<< 101 102 103 104
105 106 107 >> [Всего задач: 829]