Страница:
<< 103 104 105 106
107 108 109 >> [Всего задач: 831]
|
|
|
Сложность: 3 Классы: 8,9,10,11
|
Дан треугольник ABC площади 1. Из вершины B опущен перпендикуляр BM на биссектрису угла C. Найдите площадь треугольника AMC.
|
|
|
Сложность: 3 Классы: 7,8,9
|
Какое наибольшее количество точек самопересечения может иметь замкнутая ломаная, в которой 7 звеньев?
Дан равнобедренный прямоугольный треугольник ABC. Hа продолжениях катетов AB и AC за вершины B и C отложили равные отрезки BK и CL. E и F – точки пересечения отрезка KL и прямых, перпендикулярных KC и проходящих через точки B и A соответственно. БикЮ
Докажите, что EF = FL.
Диагонали вписанного четырехугольника ABCD пересекаются в точке K.
Докажите, что касательная в точке K к описанной окружности треугольника ABK, параллельна CD.
|
|
|
Сложность: 3 Классы: 9,10,11
|
В равнобедренном треугольнике ABC на основании BC взята точка D, а на боковой стороне AB – точки E и M так, что AM = ME и отрезок DM параллелен стороне AC. Докажите, что AD + DE > AB + BE.
Страница:
<< 103 104 105 106
107 108 109 >> [Всего задач: 831]