Страница:
<< 154 155 156 157
158 159 160 >> [Всего задач: 829]
Найдите геометрическое место точек M, лежащих внутри ромба ABCD и обладающих тем свойством, что ∠AMD + ∠BMC = 180°.
|
|
Сложность: 3+ Классы: 9,10
|
Точки A, B и C лежат на одной прямой, причём B находится между A и C.
Найдите геометрическое место таких точек M, что радиусы описанных окружностей треугольников AMB и CMB равны.
|
|
Сложность: 3+ Классы: 9,10,11
|
Прямая, проходящая через центр I вписанной окружности треугольника ABC, перпендикулярна AI и пересекает стороны AB и AC в точках C' и B' соответственно. В треугольниках BC'I и CB'I провели высоты C'C1 и B'B1 соответственно. Докажите, что середина отрезка B1C1 лежит на прямой, проходящей через точку I и перпендикулярной BC.
[Караван верблюдов]
|
|
Сложность: 3+ Классы: 7,8
|
По пустыне равномерно движется караван верблюдов длиной в 1 км. Всадник проехал от конца каравана к началу и вернулся к концу каравана. За это время караван прошел 1 км. Какой путь проехал всадник, если скорость его была постоянной?
Через точку Y на стороне AB равностороннего треугольника ABC проведена прямая, пересекающая сторону BC в точке Z, а продолжение стороны CA за точку A – в точке X. Известно, что XY = YZ и AY = BZ. Докажите, что прямые XZ и BC перпендикулярны.
Страница:
<< 154 155 156 157
158 159 160 >> [Всего задач: 829]