Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 154 155 156 157 158 159 160 >> [Всего задач: 831]      



Задача 108004

Темы:   [ Гомотетия помогает решить задачу ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Три прямые, пересекающиеся в одной точке ]
[ Свойства биссектрис, конкуррентность ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 3
Классы: 8,9

Докажите, что три прямые, проведённые через середины сторон треугольника параллельно биссектрисам противолежащих углов, пересекаются в одной точке.

Прислать комментарий     Решение

Задача 52419

Темы:   [ Вспомогательная окружность ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Три точки, лежащие на одной прямой ]
[ Три прямые, пересекающиеся в одной точке ]
Сложность: 3+
Классы: 8,9

На сторонах AC и BC треугольника ABC во внешнюю сторону построены квадраты ACA1A2 и BCB1B2.
Докажите, что прямые A1B, A2B2 и AB1 пересекаются в одной точке.

Прислать комментарий     Решение

Задача 54582

Темы:   [ ГМТ - прямая или отрезок ]
[ Ромбы. Признаки и свойства ]
[ Вписанные четырехугольники (прочее) ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Три прямые, пересекающиеся в одной точке ]
Сложность: 3+
Классы: 8,9

Найдите геометрическое место точек M, лежащих внутри ромба ABCD и обладающих тем свойством, что  ∠AMD + ∠BMC = 180°.

Прислать комментарий     Решение

Задача 57158

Темы:   [ ГМТ - прямая или отрезок ]
[ Вписанные и описанные окружности ]
[ Ромбы. Признаки и свойства ]
[ Гомотетия (ГМТ) ]
[ Три точки, лежащие на одной прямой ]
[ Радиусы окружностей ]
[ Теорема синусов ]
Сложность: 3+
Классы: 9,10

Точки A, B и C лежат на одной прямой, причём B находится между A и C.
Найдите геометрическое место таких точек M, что радиусы описанных окружностей треугольников AMB и CMB равны.

Прислать комментарий     Решение

Задача 65647

Темы:   [ Вписанные и описанные окружности ]
[ Три точки, лежащие на одной прямой ]
[ Признаки и свойства параллелограмма ]
[ Отношения линейных элементов подобных треугольников ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
[ Параллелограмм Вариньона ]
Сложность: 3+
Классы: 9,10,11

Автор: Якубов А.

Прямая, проходящая через центр I вписанной окружности треугольника ABC, перпендикулярна AI и пересекает стороны AB и AC в точках C' и B' соответственно. В треугольниках BC'I и CB'I провели высоты C'C1 и B'B1 соответственно. Докажите, что середина отрезка B1C1 лежит на прямой, проходящей через точку I и перпендикулярной BC.

Прислать комментарий     Решение

Страница: << 154 155 156 157 158 159 160 >> [Всего задач: 831]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .