Processing math: 100%
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 5292]      



Задача 60629

Темы:   [ Целочисленные треугольники ]
[ Уравнения в целых числах ]
[ Арифметика остатков (прочее) ]
Сложность: 3-
Классы: 8,9,10

В прямоугольном треугольнике длины сторон – натуральные взаимно простые числа.
Докажите, что длина гипотенузы – нечётное число, а длины катетов имеют разную чётность.

Прислать комментарий     Решение

Задача 66913

Тема:   [ Вспомогательные равные треугольники ]
Сложность: 3-
Классы: 7,8,9

В треугольнике ABC C=90, A0, B0, C0 – середины сторон BC, CA, AB соответственно. На отрезках AB0 и BA0 во внешнюю сторону построены как на основаниях равносторонние треугольники с вершинами C1, C2. Найдите угол C0C1C2.
Прислать комментарий     Решение


Задача 78469

Темы:   [ Вспомогательные равные треугольники ]
[ Свойства симметрий и осей симметрии ]
Сложность: 3-
Классы: 7,8

Из вершины B произвольного треугольника ABC проведены вне треугольника прямые BM и BN, так что  ∠ABM = ∠CBN.  Точки A' и C' симметричны точкам A и C относительно прямых BM и BN (соответственно). Доказать, что  AC' = A'C.

Прислать комментарий     Решение

Задача 78614

Тема:   [ Правильный (равносторонний) треугольник ]
Сложность: 3-
Классы: 8,9

В треугольнике ABC проведены высоты AE, BM и CP. Известно, что EM параллельна AB и EP параллельна AC. Докажите, что MP параллельна BC.
Прислать комментарий     Решение


Задача 115924

Тема:   [ Треугольник, образованный основаниями двух высот и вершиной ]
Сложность: 3-
Классы: 8,9

Сторона треугольника равна   ,   углы, прилежащие к ней, равны 75° и 60°.
Найдите отрезок, соединяющий основания высот, проведённых из вершин этих углов.

Прислать комментарий     Решение

Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 5292]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .