Страница:
<< 32 33 34 35
36 37 38 >> [Всего задач: 240]
|
|
Сложность: 3- Классы: 8,9,10,11
|
На гипотенузе AB прямоугольного треугольника ABC взяты такие точки M и N, что BC = BM и AC = AN. Докажите, что ∠MCN = 45°.
Острый угол прямоугольного треугольника равен 30°. Докажите, что высота и медиана, проведённые из вершины прямого угла, делят прямой угол на три равные части.
|
|
Сложность: 3 Классы: 9,10,11
|
Дан треугольник со сторонами 3, 4 и 5. Построены три круга радиусами 1 с центрами в вершинах треугольника.
Найдите суммарную площадь частей кругов, заключённых внутри треугольника.
|
|
Сложность: 3 Классы: 7,8,9
|
Про треугольник, один из углов которого равен 120°, известно, что его можно разрезать на два равнобедренных треугольника.
Чему могут быть равны два других угла исходного треугольника?
Пусть a, b, c – длины сторон BC, AC, AB треугольника ABC, γ = ∠C. Докажите, что c ≥ (a + b) sin γ/2.
Страница:
<< 32 33 34 35
36 37 38 >> [Всего задач: 240]