Страница:
<< 30 31 32 33
34 35 36 >> [Всего задач: 352]
|
|
Сложность: 3 Классы: 8,9,10
|
Две окружности проходят через вершину угла и точку его биссектрисы. Докажите, что отрезки, высекаемые ими на сторонах угла, равны.
В треугольнике ABC, где угол B прямой, а угол A меньше угла C, проведена медиана BM. На стороне AC взята точка L так, что ∠ABM = ∠MBL. Описанная окружность треугольника BML пересекает сторону AB в точке N. Докажите, что AN = BL.
В выпуклом пятиугольнике ABCDE AE = AD, AC = AB и ∠DAC = ∠AEB + ∠ABE.
Докажите, что сторона CD в два раза больше медианы AK треугольника ABE.
Вершины параллелограмма A1B1C1D1 лежат на сторонах параллелограмма ABCD (точка A1 лежит на стороне AB, точка B1 – на стороне BC и т.д.).
Докажите, что центры обоих параллелограммов совпадают.
От квадрата отрезан прямоугольный треугольник, сумма катетов которого равна стороне квадрата.
Докажите, что сумма трёх углов, под которыми видна из трёх оставшихся вершин его гипотенуза, равна 90°.
Страница:
<< 30 31 32 33
34 35 36 >> [Всего задач: 352]