ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Cлава перемножил первые n натуральных чисел, а Валера перемножил первые m чётных натуральных чисел (n и m больше 1). В результате у них получилось одно и то же число. Докажите, что хотя бы один из мальчиков ошибся.

Вниз   Решение


Автор: Фольклор

По прямой в одном направлении на некотором расстоянии друг от друга движутся пять одинаковых шариков, а навстречу им движутся пять других таких же шариков. Скорости всех шариков одинаковы. При столкновении любых двух шариков они разлетаются в противоположные стороны с той же скоростью, с какой двигались до столкновения. Сколько всего столкновений произойдёт между шариками?

Вверх   Решение

Задачи

Страница: << 55 56 57 58 59 60 61 >> [Всего задач: 355]      



Задача 108108

Темы:   [ Признаки и свойства касательной ]
[ Признаки равенства прямоугольных треугольников ]
[ Вспомогательные равные треугольники ]
[ Концентрические окружности ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3+
Классы: 7,8,9

Автор: Сонкин М.

Пусть O – центр описанной окружности остроугольного треугольника ABC, SA, SB, SC – окружности с центром O, касающиеся сторон BC, CA и AB соответственно. Докажите, что сумма трёх углов: между касательными к SA, проведёнными из точки A, к SB – из точки B, и к SC – из точки C, равна 180°.

Прислать комментарий     Решение

Задача 111855

Темы:   [ Свойства биссектрис, конкуррентность ]
[ Две касательные, проведенные из одной точки ]
[ Вспомогательные равные треугольники ]
Сложность: 3+
Классы: 8,9

Через точку I пересечения биссектрис треугольника ABC проведена прямая, пересекающая стороны AB и BC в точках M и N соответственно. Треугольник BMN оказался остроугольным. На стороне AC выбраны точки K и L так, что  ∠ILA = ∠IMB,  ∠IKC = ∠INB.  Докажите, что
AM + KL + CN = AC.

Прислать комментарий     Решение

Задача 115316

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Четырехугольники (прочее) ]
[ Вспомогательные равные треугольники ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 3+
Классы: 8,9

В выпуклом четырёхугольнике ABCD выполняются равенства:  ∠B = ∠C  и  CD = 2AB.  На стороне BC выбрана такая точка X, что  ∠BAX = ∠CDA.
Докажите, что  AX = AD.

Прислать комментарий     Решение

Задача 116072

Темы:   [ Вписанные и описанные многоугольники ]
[ Вписанный угол, опирающийся на диаметр ]
[ Равные треугольники. Признаки равенства (прочее) ]
[ Разрезания на части, обладающие специальными свойствами ]
Сложность: 3+
Классы: 8,9,10,11

Bыпуклый n-угольник P, где  n > 3,  разрезан на равные треугольники диагоналями, не пересекающимися внутри него.
Каковы возможные значения n, если n-угольник вписанный?

Прислать комментарий     Решение

Задача 116670

Темы:   [ Касательные прямые и касающиеся окружности (прочее) ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Вспомогательные равные треугольники ]
[ Медиана, проведенная к гипотенузе ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 3+
Классы: 7,8

Автор: Фольклор

Через точку Y на стороне AB равностороннего треугольника ABC проведена прямая, пересекающая сторону BC в точке Z, а продолжение стороны CA за точку A – в точке X. Известно, что  XY = YZ  и  AY = BZ.  Докажите, что прямые XZ и BC перпендикулярны.

Прислать комментарий     Решение

Страница: << 55 56 57 58 59 60 61 >> [Всего задач: 355]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .