Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Вдоль прямолинейного участка границы установлено 15 столбов. Около каждого столба поймали несколько близоруких шпионов. Для каждого столба одного из пойманных около него шпионов допросили. Каждый из допрошенных честно сказал, сколько других шпионов он видел. При этом видел он только тех, кто находился около его столба и около ближайших соседних столбов. Можно ли по этим данным восстановить численность шпионов, пойманных около каждого столба?

   Решение

Задачи

Страница: << 57 58 59 60 61 62 63 >> [Всего задач: 352]      



Задача 65955

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Признаки и свойства параллелограмма ]
[ Равные треугольники. Признаки равенства ]
[ Правильный (равносторонний) треугольник ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Средняя линия трапеции ]
Сложность: 4-
Классы: 8,9

На боковых сторонах AB и AC равнобедренного треугольника ABC отметили точки K и L соответственно так, что  AK = CL  и  ∠ALK + ∠LKB = 60°.
Докажите, что  KL = BC.

Прислать комментарий     Решение

Задача 66750

Темы:   [ Вписанный угол равен половине центрального ]
[ Правильный (равносторонний) треугольник ]
[ Равные треугольники. Признаки равенства (прочее) ]
[ Теорема синусов ]
Сложность: 4-
Классы: 8,9,10,11

Внутри равнобедренного треугольника $ABC$ отмечена точка $K$ так, что  $CK = AB = BC$  и  ∠ KAC = 30°.  Найдите угол $AKB$.

Прислать комментарий     Решение

Задача 67210

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Симметрия помогает решить задачу ]
[ Вспомогательные равные треугольники ]
Сложность: 4-
Классы: 8,9,10,11

Дан вписанный четырехугольник $ABCD$. На сторонах $AD$ и $CD$ взяты точки $E$ и $F$ так, что $AE=BC$ и $AB=CF$. Пусть $M$ – середина $EF$. Докажите, что угол $AMC$ прямой.
Прислать комментарий     Решение


Задача 108128

Темы:   [ Ортоцентр и ортотреугольник ]
[ Признаки и свойства параллелограмма ]
[ Равные треугольники. Признаки равенства (прочее) ]
Сложность: 4-
Классы: 8,9

В остроугольном треугольнике ABC проведены высоты AHA, BHB и CHC.
Докажите, что треугольник с вершинами в ортоцентрах треугольников AHBHC, BHAHC и CHAHB равен треугольнику HAHBHC.

Прислать комментарий     Решение

Задача 108640

Темы:   [ Четыре точки, лежащие на одной окружности ]
[ Пересекающиеся окружности ]
[ Вспомогательные равные треугольники ]
[ Пересекающиеся окружности ]
[ Признаки и свойства параллелограмма ]
Сложность: 4-
Классы: 8,9

На плоскости даны две пересекающиеся окружности. Точка A – одна из двух точек пересечения. В каждой окружности проведён диаметр, параллельный касательной в точке A к другой окружности, причём эти диаметры не пересекаются. Докажите, что концы этих диаметров лежат на одной окружности.

Прислать комментарий     Решение

Страница: << 57 58 59 60 61 62 63 >> [Всего задач: 352]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .