|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Петя сложил 10 последовательных степеней двойки, начиная с некоторой, а Вася сложил некоторое количество последовательных натуральных чисел, начиная с 1. Могли ли они получить один и тот же результат? Художник-абстракционист взял деревянный куб 5×5×5, разбил каждую грань на единичные квадраты и окрасил каждый из них в один из трёх цветов – чёрный, белый или красный – так, что нет соседних по стороне квадратов одного цвета. Какое наименьшее число чёрных квадратов могло при этом получиться? (Квадраты, имеющие общую сторону, считаются соседними и в случае, когда они лежат на разных гранях куба.) |
Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 1359]
Дан треугольник со сторонами 13, 14, 15. Найдите высоту, проведённую к большей стороне.
В выпуклом четырёхугольнике MNLQ углы при вершинах N и L — прямые, а угол при вершине M равен arctg3. Найдите площадь четырёхугольника, если известно, что сторона NL вдвое больше стороны LQ и на 5 больше стороны NM.
В равнобедренном треугольнике ABC (AB = BC) высота AE = 12, а основание AC = 15. Найдите площадь треугольника.
На высоте AH треугольника ABC взята точка M. Докажите, что AB2 - AC2 = MB2 - MC2.
На продолжении боковой стороны AB равнобедренного треугольника
ABC за вершину A взята точка D, причём AD = 2AB. Известно, что
Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 1359] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|