ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Дан треугольник ABC. На продолжении стороны AC за точку C
взята точка N, причём CN = 2/3 AC. Точка K находится на стороне AB, причём AK : KB = 3 : 2. При каких a и b уравнение x3 + ax + b = 0 имеет три различных решения, составляющих арифметическую прогрессию? |
Страница: << 37 38 39 40 41 42 43 >> [Всего задач: 1358]
Медиана DM треугольника DEF равна половине стороны EF. Один из углов, образованных при пересечении стороны EF биссектрисой
DL, равен 55°.
Дан треугольник KLM с основанием KM, равным
Диагонали выпуклого четырёхугольника ABCD пересекаются в точке E, AB = AD, CA – биссектриса угла C, ∠BAD = 140°, ∠BEA = 110°.
В треугольнике ABC AB = c, AC = b > c, AD – биссектриса. Через точку D проведена прямая, перпендикулярная AD
и пересекающая AC в точке E.
В равнобедренном треугольнике боковая сторона равна 20, а диаметр описанной окружности равен 25. Найдите радиус вписанной окружности.
Страница: << 37 38 39 40 41 42 43 >> [Всего задач: 1358]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке