Страница:
<< 17 18 19 20
21 22 23 >> [Всего задач: 112]
|
|
Сложность: 3+ Классы: 10,11
|
В треугольнике ABC проведены высота AH и биссектриса BE. Известно, что угол BEA равен 45°. Докажите, что угол EHC равен 45°.
|
|
Сложность: 3+ Классы: 8,9,10
|
В остроугольный треугольник вписана окружность радиуса R. К окружности проведены три касательные, разбивающие треугольник на три прямоугольных треугольника и шестиугольник. Периметр шестиугольника равен Q. Найдите сумму диаметров окружностей, вписанных в прямоугольные треугольники.
|
|
Сложность: 3+ Классы: 10,11
|
На плоскости даны две перпендикулярные прямые. С помощью кронциркуля укажите на
плоскости три точки, являющиеся вершинами равностороннего треугольника.
Кронциркуль — это инструмент, похожий на циркуль, но на концах у него две
иголки. Он позволяет переносить одинаковые расстояния, но не позволяет рисовать
(процарапывать) окружности, дуги окружностей и делать засечки.
Доказать, что множество центров окружностей, вписанных в
прямоугольные треугольники, гипотенузой которых служит неподвижный
отрезок длиной
c , есть дуги окружностей с радиусом
c
/2 .
|
|
Сложность: 4- Классы: 9,10,11
|
Докажите, что в прямоугольном треугольнике ортоцентр треугольника, образованного точками касания сторон с вписанной окружностью, лежит на высоте, проведённой из прямого угла.
Страница:
<< 17 18 19 20
21 22 23 >> [Всего задач: 112]