ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 51]      



Задача 65716

Темы:   [ Треугольники с углами $60^\circ$ и $120^\circ$ ]
[ Ортоцентр и ортотреугольник ]
[ Симметрия помогает решить задачу ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 4
Классы: 8,9,10

Автор: Зимин А.

В остроугольном треугольнике ABC угол C равен 60°, H – точка пересечения высот. Окружность с центром H и радиусом HC второй раз пересекает прямые CA и CB в точках M и N соответственно. Докажите, что прямые AN и BM параллельны (или совпадают).

Прислать комментарий     Решение

Задача 111915

Темы:   [ Треугольники с углами $60^\circ$ и $120^\circ$ ]
[ Симметрия помогает решить задачу ]
[ Поворот помогает решить задачу ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 4
Классы: 8,9,10

Угол B при вершине равнобедренного треугольника ABC равен 120°. Из вершины B выпустили внутрь треугольника два луча под углом 60° друг к другу, которые, отразившись от основания AC в точках P и Q, попали на боковые стороны в точки M и N (см. рис.). Докажите, что площадь треугольника PBQ равна сумме площадей треугольников AMP и CNQ.

Прислать комментарий     Решение

Задача 115368

Темы:   [ Треугольники с углами $60^\circ$ и $120^\circ$ ]
[ Углы между биссектрисами ]
[ Вспомогательная окружность ]
[ Вписанные четырехугольники (прочее) ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Свойства симметрий и осей симметрии ]
Сложность: 5-
Классы: 8,9

В треугольнике ABC угол A равен 60o . Пусть BB1 и CC1  — биссектрисы этого треугольника. Докажите, что точка, симметричная вершине A относительно прямой B1C1 , лежит на стороне BC .
Прислать комментарий     Решение


Задача 56869

Тема:   [ Треугольники с углами $60^\circ$ и $120^\circ$ ]
Сложность: 5
Классы: 8,9

В остроугольном треугольнике ABC с углом A, равным  60o, высоты пересекаются в точке H.
а) Пусть M и N — точки пересечения серединных перпендикуляров к отрезкам BH и CH со сторонами AB и AC соответственно. Докажите, что точки M, N и H лежат на одной прямой.
б) Докажите, что на той же прямой лежит центр O описанной окружности.
Прислать комментарий     Решение


Задача 56870

Тема:   [ Треугольники с углами $60^\circ$ и $120^\circ$ ]
Сложность: 6
Классы: 8,9

В треугольнике ABC проведены биссектрисы BB1 и CC1. Докажите, что если  $ \angle$CC1B1 = 30o, то либо  $ \angle$A = 60o, либо  $ \angle$B = 120o.
Прислать комментарий     Решение


Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 51]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .