ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 54 55 56 57 58 59 60 >> [Всего задач: 448]      



Задача 108514

Темы:   [ Углы между биссектрисами ]
[ Теорема косинусов ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
Сложность: 4-
Классы: 8,9

В треугольнике ABC угол при вершине B равен $ {\frac{\pi}{2}}$, а отрезки, соединяющие центр вписанной окружности с вершинами A и C, равны 3 и $ \sqrt{2}$ соответственно. Найдите радиус окружности, вписанной в треугольник ABC.

Прислать комментарий     Решение


Задача 53212

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Теорема косинусов ]
[ Отношение площадей подобных треугольников ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 4-
Классы: 8,9

Дан треугольник ABC. На стороне BC взята точка P, а на стороне AC взята точка M, причём  ∠APB = ∠BMA = 45°.  Отрезки AP и BM пересекаются в точке O. Известно,что площади треугольников BOP и AOM равны между собой,  BC = 1,  BO = .  Найдите площадь треугольника ABC.

Прислать комментарий     Решение

Задача 53836

Темы:   [ Две пары подобных треугольников ]
[ Теорема косинусов ]
Сложность: 4-
Классы: 8,9

В треугольнике ABC сторона AC равна 7, угол BCA равен 60°. Точка E, лежащая на стороне BC, удалена от вершины B на 6, F – точка пересечения AE с медианой BD. Найдите сторону AB, если  BF : FD = 3 : 2.

Прислать комментарий     Решение

Задача 54870

Темы:   [ Вписанные и описанные окружности ]
[ Теорема косинусов ]
[ Теорема синусов ]
[ Отношение, в котором биссектриса делит сторону ]
Сложность: 4-
Классы: 8,9

В треугольнике ABC со сторонами BC = 7, AC = 5, AB = 3 проведена биссектриса AD. Вокруг треугольника ABD описана окружность, а в треугольник ACD вписана окружность. Найдите произведение их радиусов.

Прислать комментарий     Решение


Задача 54883

Темы:   [ Отношение, в котором биссектриса делит сторону ]
[ Теорема косинусов ]
Сложность: 4-
Классы: 8,9

В треугольнике ABC проведены биссектрисы BL и AE углов ABC и BAC соответственно, которые пересекаются в точке O. Известно,что AB = BL, периметр треугольника ABC равен 28, BO = 2OL. Найдите AB.

Прислать комментарий     Решение


Страница: << 54 55 56 57 58 59 60 >> [Всего задач: 448]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .