ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Материалы по этой теме:
Подтемы:
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 373]      



Задача 57425

Тема:   [ Неравенства с биссектрисами ]
Сложность: 4
Классы: 8,9

Докажите, что  la $ \leq$ $ \sqrt{p(p-a)}$.
Прислать комментарий     Решение


Задача 57485

Тема:   [ Неравенства для остроугольных треугольников ]
Сложность: 4
Классы: 8

Докажите, что для остроугольного треугольника

$\displaystyle {\frac{m_a}{h_a}}$ + $\displaystyle {\frac{m_b}{h_b}}$ + $\displaystyle {\frac{m_c}{h_c}}$ $\displaystyle \leq$ 1 + $\displaystyle {\frac{R}{r}}$.


Прислать комментарий     Решение

Задача 57486

Тема:   [ Неравенства для остроугольных треугольников ]
Сложность: 4
Классы: 8

Докажите, что для остроугольного треугольника

$\displaystyle {\frac{1}{l_a}}$ + $\displaystyle {\frac{1}{l_b}}$ + $\displaystyle {\frac{1}{l_c}}$ $\displaystyle \leq$ $\displaystyle \sqrt{2}$$\displaystyle \left(\vphantom{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}\right.$$\displaystyle {\frac{1}{a}}$ + $\displaystyle {\frac{1}{b}}$ + $\displaystyle {\frac{1}{c}}$$\displaystyle \left.\vphantom{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}\right)$.


Прислать комментарий     Решение

Задача 57487

Тема:   [ Неравенства для остроугольных треугольников ]
Сложность: 4
Классы: 8

Докажите, что если треугольник не тупоугольный, то  ma + mb + mc $ \geq$ 4R.
Прислать комментарий     Решение


Задача 108234

Темы:   [ Против большей стороны лежит больший угол ]
[ Пятиугольники ]
[ Многоугольники (неравенства) ]
Сложность: 4
Классы: 7,8,9

Автор: Кноп К.А.

Существует ли выпуклый пятиугольник (все углы меньше 180o ) ABCDE , у которого все углы ABD , BCE , CDA , DEB и EAC – тупые?
Прислать комментарий     Решение


Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 373]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .