ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 44]      



Задача 54010

Темы:   [ Перпендикуляр короче наклонной. Неравенства для прямоугольных треугольников ]
[ Медиана, проведенная к гипотенузе ]
Сложность: 3-
Классы: 8,9

Докажите, что высота неравнобедренного прямоугольного треугольника, проведённая из вершины прямого угла, меньше половины гипотенузы.

Прислать комментарий     Решение

Задача 32098

Темы:   [ Перпендикуляр короче наклонной. Неравенства для прямоугольных треугольников ]
[ Прямоугольные треугольники (прочее) ]
[ Неравенства с высотами ]
Сложность: 3
Классы: 7,8,9

В треугольнике две высоты не меньше сторон, на которые они опущены. Найдите углы треугольника.

Прислать комментарий     Решение

Задача 57481

Тема:   [ Перпендикуляр короче наклонной. Неравенства для прямоугольных треугольников ]
Сложность: 3
Классы: 8

ABC - прямоугольный треугольник с прямым углом C. Докажите, что a + b < c + hc.
Прислать комментарий     Решение


Задача 55159

Темы:   [ Перпендикуляр короче наклонной. Неравенства для прямоугольных треугольников ]
[ Площадь треугольника (через две стороны и угол между ними) ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 3
Классы: 8,9

Докажите, что площадь выпуклого четырёхугольника ABCD не превосходит $ {\frac{1}{2}}$(AB . BC + AD . DC).

Прислать комментарий     Решение


Задача 55178

Тема:   [ Перпендикуляр короче наклонной. Неравенства для прямоугольных треугольников ]
Сложность: 3+
Классы: 8,9

Существует ли треугольник, у которого две высоты больше 100, а площадь меньше 1?

Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 44]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .