Страница:
<< 48 49 50 51
52 53 54 >> [Всего задач: 328]
|
|
Сложность: 4+ Классы: 9,10,11
|
В английском клубе вечером собрались n его членов (n ≥ 3). По традициям клуба каждый принес с собой сок того вида, который он предпочитает, в том количестве, которое он планирует выпить в течение вечера. Согласно правилам клуба, в любой момент любые три его члена могут присесть за столик и выпить сока (каждый – своего) в любом количестве, но обязательно все трое поровну. Докажите, что для того, чтобы все члены могли в течение вечера полностью выпить принесенный с собой сок, необходимо и достаточно, чтобы доля сока, принесенного каждым членом клуба, не превосходила одной трети от общего количества.
|
|
Сложность: 4+ Классы: 9,10,11
|
Для каждого натурального n обозначим через s(n) сумму цифр его десятичной записи. Назовём натуральное число m особым, если его нельзя представить в виде m = n + s(n). (Например, число 117 не особое, поскольку 117 = 108 + s(108), а число 121, как нетрудно убедиться, – особое.) Верно ли, что особых чисел существует лишь конечное число?
|
|
Сложность: 4+ Классы: 8,9,10
|
Прямой угол разбит на бесконечное число квадратных клеток со стороной
единица. Будем рассматривать ряды клеток, параллельные сторонам угла
(вертикальные и горизонтальные ряды). Можно ли в каждую клетку записать натуральное число так, чтобы каждый вертикальный и каждый горизонтальный ряд клеток содержал все натуральные числа по одному разу?
|
|
Сложность: 4+ Классы: 9,10,11
|
В стране несколько городов, соединённых дорогами с односторонним и
двусторонним движением. Известно, что из каждого города в любой другой можно
проехать ровно одним путём, не проходящим два раза через один и тот же город.
Докажите, что страну можно разделить на три губернии так, чтобы ни одна дорога
не соединяла два города из одной губернии.
|
|
Сложность: 4+ Классы: 8,9,10
|
В стране n городов. Между каждыми двумя из них проложена либо автомобильная, либо железная дорога. Турист хочет объехать страну, побывав в каждом городе ровно один раз, и вернуться в город, с которого он начинал путешествие. Докажите, что турист может выбрать город, с которого он начнет путешествие, и маршрут так, что ему придётся поменять вид транспорта не более
одного раза.
Страница:
<< 48 49 50 51
52 53 54 >> [Всего задач: 328]