Страница:
<< 50 51 52 53
54 55 56 >> [Всего задач: 328]
|
|
Сложность: 5- Классы: 10,11
|
Докажите, что для чисел {xn} из задачи 61297 можно в явном виде указать разложения в цепные дроби: xn+1 = [1;].
Оцените разность |xn – |.
|
|
Сложность: 5- Классы: 9,10,11
|
В ячейку памяти компьютера записали число 6. Далее компьютер делает миллион шагов. На шаге номер n он увеличивает число в ячейке на наибольший общий делитель этого числа и n. Докажите, что на каждом шаге компьютер увеличивает число в ячейке либо на 1, либо на простое число.
|
|
Сложность: 5- Классы: 10,11
|
Докажите, что для любого натурального n найдётся натуральное число, десятичная запись квадрата которого начинается n единицами, а заканчивается какой-то комбинацией из n единиц и двоек.
|
|
Сложность: 5- Классы: 10,11
|
В соревновании участвуют 16 боксёров. Каждый боксёр в течение одного дня
может проводить только один бой. Известно, что все боксёры имеют разную силу,
и что сильнейший всегда выигрывает. Докажите, что за 10 дней можно определить место каждого боксёра.
(Расписание каждого дня соревнований составляется вечером накануне и в день
соревнований не изменяется.)
|
|
Сложность: 5- Классы: 9,10,11
|
Докажите, что для любого k > 1 найдётся такая степень двойки, что среди k последних её цифр не менее половины составляют девятки.
(Например, 212 = ...96, 253 = ...992.)
Страница:
<< 50 51 52 53
54 55 56 >> [Всего задач: 328]