Страница:
<< 57 58 59 60
61 62 63 >> [Всего задач: 328]
|
|
Сложность: 4+ Классы: 9,10
|
Радикалом натурального числа N (обозначается rad(N)) называется произведение всех простых делителей числа N, взятых по одному разу. Например,
rad(120) = 2·3·5 = 30. Существует ли такая тройка попарно взаимно простых натуральных чисел A, B, C, что A + B = C и C > 1000 rad(ABC)?
|
|
Сложность: 4+ Классы: 8,9,10
|
Пусть n и b – натуральные числа. Через V(n, b) обозначим число разложений n на сомножители, каждый из которых больше b (например:
36 = 6·6 = 4·9 = 3·3·4 = 3·12, так что V(36, 2) = 5). Докажите, что V(n, b) < n/b.
|
|
Сложность: 4+ Классы: 9,10,11
|
С ненулевым числом разрешается проделывать следующие
операции:
x ,
x
. Верно ли, что из каждого ненулевого
рационального числа можно получить каждое рациональное
число с помощью конечного числа таких операций?
|
|
Сложность: 4+ Классы: 8,9,10
|
Дана функция f(x), значение которой при любом целом x целое. Известно, что для любого простого числа p существует такой многочлен Qp(x) степени, не превышающей 2013, с целыми коэффициентами, что f(n) – Qp(n) делится на p при любом целом n. Верно ли, что существует такой многочлен g(x) с вещественными коэффициентами , что g(n) = f(n) для любого целого n?
|
|
Сложность: 5- Классы: 9,10,11
|
Рассматриваются всевозможные
n-значные числа, составленные из цифр 1, 2 и
3. В конце каждого из этих чисел приписывается цифра 1, 2 или 3 так,
что к двум числам, у которых во всех разрядах стоят разные цифры, приписываются
разные цифры. Доказать, что найдется
n-значное число, в записи которого
участвует лишь одна единица и к которому приписывается единица.
Страница:
<< 57 58 59 60
61 62 63 >> [Всего задач: 328]