ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 57 58 59 60 61 62 63 >> [Всего задач: 328]      



Задача 64717

Темы:   [ НОД и НОК. Взаимная простота ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Делимость чисел. Общие свойства ]
[ Индукция (прочее) ]
Сложность: 4+
Классы: 9,10

Автор: Фольклор

Радикалом натурального числа N (обозначается rad(N)) называется произведение всех простых делителей числа N, взятых по одному разу. Например,
rad(120) = 2·3·5 = 30.  Существует ли такая тройка попарно взаимно простых натуральных чисел A, B, C, что  A + B = C  и  C > 1000 rad(ABC)?

Прислать комментарий     Решение

Задача 98142

Темы:   [ Делимость чисел. Общие свойства ]
[ Раскладки и разбиения ]
[ Разбиения на пары и группы; биекции ]
[ Индукция (прочее) ]
Сложность: 4+
Классы: 8,9,10

Пусть n и b – натуральные числа. Через  V(n, b)  обозначим число разложений n на сомножители, каждый из которых больше b (например:
36 = 6·6 = 4·9 = 3·3·4 = 3·12,  так что  V(36, 2) = 5).  Докажите, что  V(n, b) < n/b.

Прислать комментарий     Решение

Задача 109493

Темы:   [ Рациональные и иррациональные числа ]
[ Процессы и операции ]
[ Итерации ]
[ Индукция (прочее) ]
[ Теория алгоритмов (прочее) ]
Сложность: 4+
Классы: 9,10,11

С ненулевым числом разрешается проделывать следующие операции: x , x . Верно ли, что из каждого ненулевого рационального числа можно получить каждое рациональное число с помощью конечного числа таких операций?
Прислать комментарий     Решение


Задача 116008

Темы:   [ Делимость чисел. Общие свойства ]
[ Суммы числовых последовательностей и ряды разностей ]
[ Интерполяционный многочлен Лагранжа ]
[ Индукция (прочее) ]
Сложность: 4+
Классы: 8,9,10

Дана функция f(x), значение которой при любом целом x целое. Известно, что для любого простого числа p существует такой многочлен Qp(x) степени, не превышающей 2013, с целыми коэффициентами, что  f(n) – Qp(n)  делится на p при любом целом n. Верно ли, что существует такой многочлен g(x) с вещественными коэффициентами , что  g(n) = f(n)  для любого целого n?

Прислать комментарий     Решение

Задача 78631

Темы:   [ Десятичная система счисления ]
[ Процессы и операции ]
[ Доказательство от противного ]
[ Индукция (прочее) ]
Сложность: 5-
Классы: 9,10,11

Рассматриваются всевозможные n-значные числа, составленные из цифр 1, 2 и 3. В конце каждого из этих чисел приписывается цифра 1, 2 или 3 так, что к двум числам, у которых во всех разрядах стоят разные цифры, приписываются разные цифры. Доказать, что найдется n-значное число, в записи которого участвует лишь одна единица и к которому приписывается единица.
Прислать комментарий     Решение


Страница: << 57 58 59 60 61 62 63 >> [Всего задач: 328]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .