ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 58 59 60 61 62 63 64 >> [Всего задач: 328]      



Задача 97913

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Раскраски ]
[ Доказательство от противного ]
[ Индукция (прочее) ]
Сложность: 5-
Классы: 7,8,9

Каждая клетка шахматной доски закрашена в один из цветов – синий или красный. Докажите, что клетки одного из цветов обладают тем свойством, что их может обойти шахматный ферзь (на клетках этого цвета ферзь может побывать не один раз, на клетки другого цвета он не ставится, но может через них перепрыгивать).

Прислать комментарий     Решение

Задача 109755

Темы:   [ Ориентированные графы ]
[ Вспомогательная раскраска (прочее) ]
[ Связность и разложение на связные компоненты ]
[ Индукция (прочее) ]
Сложность: 5-
Классы: 9,10,11

Автор: Пастор А.

В городе несколько площадей. Некоторые пары площадей соединены улицами с односторонним движением так, что с каждой площади можно выехать ровно по двум улицам. Докажите, что город можно разделить на 1014 районов так, чтобы улицами соединялись только площади из разных районов, и для каждых двух районов все соединяющие их улицы были направлены одинаково (либо все из первого района во второй, либо наоборот).

Прислать комментарий     Решение

Задача 111344

Темы:   [ Раскраски ]
[ Деление с остатком ]
[ Четность и нечетность ]
[ Индукция (прочее) ]
[ Обыкновенные дроби ]
Сложность: 5-
Классы: 9,10,11

Натуральные числа покрашены в N цветов. Чисел каждого цвета бесконечно много. Известно, что цвет полусуммы двух различных чисел одной чётности зависит только от цветов слагаемых.
  а) Докажите, что полусумма чисел одной чётности одного цвета всегда окрашена в тот же цвет.
  б) При каких N такая раскраска возможна?

Прислать комментарий     Решение

Задача 111688

Темы:   [ Рекуррентные соотношения (прочее) ]
[ Делимость чисел. Общие свойства ]
[ Соображения непрерывности ]
[ Индукция (прочее) ]
Сложность: 5-
Классы: 9,10,11

В бесконечной последовательности  a1, a2, a3, ... число a1 равно 1, а каждое следующее число an строится из предыдущего an–1 по правилу: если у числа n наибольший нечётный делитель имеет остаток 1 от деления на 4, то  an = an–1 + 1,  если же остаток равен 3, то  an = an–1 – 1.  Докажите, что в этой последовательности
  а) число 1 встречается бесконечно много раз;
  б) каждое натуральное число встречается бесконечно много раз.
(Вот первые члены этой последовательности: 1, 2, 1, 2, 3, 2, 1, 2, 3, 4, 3, ...)
Прислать комментарий     Решение


Задача 64362

Темы:   [ Теория алгоритмов (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
[ Степень вершины ]
[ Индукция (прочее) ]
[ Кооперативные алгоритмы ]
[ Оценка + пример ]
Сложность: 5
Классы: 10,11

На каждой из 2013 карточек написано по числу, все эти 2013 чисел различны. Карточки перевёрнуты числами вниз. За один ход разрешается указать на десять карточек, и в ответ сообщат одно из чисел, написанных на них (неизвестно, какое).
Для какого наибольшего t гарантированно удастся найти t карточек, про которые известно, какое число написано на каждой из них?

Прислать комментарий     Решение

Страница: << 58 59 60 61 62 63 64 >> [Всего задач: 328]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .