ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 60 61 62 63 64 65 66 >> [Всего задач: 328]      



Задача 105076

Темы:   [ Полуинварианты ]
[ Двоичная система счисления ]
[ Перестановки и подстановки (прочее) ]
[ Процессы и операции ]
[ Индукция (прочее) ]
[ Принцип крайнего (прочее) ]
Сложность: 4-
Классы: 8,9,10

В колоде часть карт лежит рубашкой вниз. Время от времени Петя вынимает из колоды пачку из одной или нескольких подряд идущих карт, в которой верхняя и нижняя карты лежат рубашкой вниз, переворачивает всю пачку как одно целое и вставляет её в то же место колоды (если "пачка" состоит лишь из одной карты, то требуется только, чтобы она лежала рубашкой вниз). Докажите, что в конце концов все карты лягут рубашкой вверх, как бы ни действовал Петя.

Прислать комментарий     Решение

Задача 107793

Темы:   [ Аддитивность интеграла ]
[ Линейность интеграла ]
[ Перенос помогает решить задачу ]
[ Многочлены (прочее) ]
[ Индукция (прочее) ]
Сложность: 4-
Классы: 10,11

Разрезать отрезок  [–1, 1]  на чёрные и белые отрезки так, чтобы интегралы от любой  а) линейной функции;  б) квадратного трёхчлена по белым и чёрным отрезкам были равны.

Прислать комментарий     Решение

Задача 31095

Темы:   [ Степень вершины ]
[ Обход графов ]
[ Четность и нечетность ]
[ Деревья ]
[ Индукция (прочее) ]
Сложность: 4
Классы: 6,7,8

а) В графе есть эйлеров путь. Доказать, что граф связен и вершин с нечётной степенью в нём не больше двух.
б) Доказать обратное: если в связном графе вершин с нечётной степенью не больше двух, то в нём есть эйлеров путь.

Прислать комментарий     Решение

Задача 64615

Темы:   [ Последовательности (прочее) ]
[ Простые числа и их свойства ]
[ Произведения и факториалы ]
[ Примеры и контрпримеры. Конструкции ]
[ Индукция (прочее) ]
Сложность: 4
Классы: 10,11

Все натуральные числа выписали в ряд в некотором порядке (каждое число по одному разу). Обязательно ли найдутся несколько (больше одного) чисел, выписанных подряд (начиная с какого-то места), сумма которых будет простым числом?

Прислать комментарий     Решение

Задача 98237

Темы:   [ Объединение, пересечение и разность множеств ]
[ Круг, сектор, сегмент и проч. ]
[ Пересекающиеся окружности ]
[ Задачи с ограничениями ]
[ Индукция (прочее) ]
[ Оценка + пример ]
Сложность: 4+
Классы: 9,10,11

Фигура Ф представляет собой пересечение n кругов  (n ≥ 2,  радиусы не обязательно одинаковы). Какое максимальное число криволинейных "сторон" может иметь фигура Ф?  (Криволинейная сторона – это участок границы Ф, принадлежащий одной из окружностей и ограниченный точками пересечения с другими окружностями.)

Прислать комментарий     Решение


Страница: << 60 61 62 63 64 65 66 >> [Всего задач: 328]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .